

Which one is strongest electrolyte in the 9. following

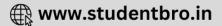
[CPMT 1990]

- (a) NaCl (b) CH₃COOH
- (c) NH_AOH (d) $C_6 H_{12} O_6$
- The equivalent conductance at infinite dilution of 10. a weak acid such as HF [Pb. PMT 1998]
 - (a) Can be determined by measurement of very dilute HF solution
 - (b) Can be determined by extrapolation of measurements on dilute solutions of HCl, HBr and HI
 - (c) Can best be determined from measurements on dilute solutions of NaF, NaCl and HCl
 - (d) Is an undefined quantity
- If α is the degree of ionization, *C* the 11. concentration of a weak electrolyte and K_a the acid ionization constant, then the correct relationship between α , C and K_{α} is

[CET Pune 1998; Pb. PMT 1998; RPMT 2002]

(a)
$$\alpha^2 = \sqrt{\frac{K_a}{C}}$$
 (b) $\alpha^2 = \sqrt{\frac{C}{K_a}}$
(c) $\alpha = \sqrt{\frac{K_a}{C}}$ (d) $\alpha = \sqrt{\frac{C}{K_a}}$

Theory of ionization was given by


- (a) Rutherford (b) Graham
- (c) Faraday (d) Arrhenius
- An ionizing solvent has 13.
 - (a) Low value of dielectric constant
 - (b) High value of dielectric constant
 - (c) A dielectric constant equal to 1
 - (d) Has a high melting point
- The extent of ionization increases 14. [MNR 1982]
 - (a) With the increase in concentration of solute
 - (b) On addition of excess water to solution
 - (c) On decreasing the temperature of solution
- Which is generally true about ionic compounds 15.

[MNR 1980]

[AMU 1983; DPMT 1985]

- (a) Have low boiling point
- (b) Have low melting point
- (c) Soluble in non polar solvents
- (d) Conduct electricity in the fused state
- At infinite dilution, the percentage ionisation for 16. both strong and weak electrolytes is [CPMT 1999] (a) 1% (b) 20%
 - (c) 50% (d) 100%
- The degree of ionization of a compound depends 17. on
 - (a) Size of solute molecules

[[]Pb. PMT 2002]

Ionic Equilibrium 351	
(d) 10 ⁻⁹	

- (b) Nature of solute molecules
- (c) Nature of vessel used
- (d) Quantity of electricity passed
- **18.** For a weak acid *HA*, Ostwald's dilution law is represented by the equation

(a)
$$K_a = \frac{\alpha c}{1 - \alpha^2}$$
 (b) $K_a = \frac{\alpha^2 c}{1 - \alpha}$
(c) $\alpha = \frac{K_a c}{1 - c}$ (d) $K_a = \frac{\alpha^2 c}{1 - \alpha^2}$

- 19. Acetic acid is a weak electrolyte because[CPMT 1974](a) Its molecular weight is high
 - (b) It is covalent compound

(c) It does not dissociate much or its ionization is very less

- (d) It is highly unstable
- **20.** In which of the following dissociation of NH_4OH will be minimum [MP PET 2000]
 - (a) NaOH (b) H_2O
 - (c) NH_4Cl (d) NaClVant hoff factor of $BaCl_2$ of conc. 0.01*M* is 1.98.
- **21.** Vant hoff factor of $BaCl_2$ of conc. 0.01*M* is 1.98. Percentage dissociation of $BaCl_2$ on this conc. Will be
 - [Kerala CET 2005]
 - (a) 49 (b) 69
 - (c) 89 (d) 98
 - (e) 100
- 22. In which of the following solutions, ions are present
 [NCERT 1981]
 - (a) Sucrose in water (b) Sulphur in CS_2

(c) Caesium nitrate in water (d) Ethanol in water

- **23.** The following equilibrium exists inaqueous solution, $CH_3COOH \rightleftharpoons CH_3COO^- + H^+$ if dil *HCl* is added, without change in temperature, the
 - (a) Concentration of CH_3COO^- will increase
 - (b) Concentration of CH_3COO^- will decrease
 - (c) The equilibrium constant will increase
 - (d) The equilibrium constant will decrease
- 24. Which will not affect the degree of ionisation
 [MP PMT 1994]
 - (a) Temperature (b) Concentration
 - (c) Type of solvent (d) Current
- 25. The addition of a polar solvent to a solid
 - electrolyte results in[NCERT 1973](a) Polarization(b) Association
 - (a) Polarization(b) Association(c) Ionization(d) Electron transfer
- **26.** The degree of dissociation of 0.1 M HCN solution is
- 0.01%. Its ionisation constant would be [**RPMT 1999**] (a) 10^{-3} (b) 10^{-5}

(c) 10⁻⁷

- **27.** The hydrogen ion concentration in weak acid of dissociation constant K_a and concentration c is nearly equal to
 - [CBSE PMT 1989; RPMT 2000]
 - (a) $\sqrt{K_a / c}$ (b) c / K_a
 - (c) $K_a c$ (d) $\sqrt{K_a c}$
- **28.** Degree of dissociation of $0.1 N CH_3 COOH$ is

(Dissociation constant	$= 1 \times 10^{-5}$)	[MP I	PET 1997]	
(a) 10 ⁻⁵	(b) 10^{-4}			
(c) 10^{-3}	(d) 10 ⁻²			
	• • •		_	

- 29. Which of the following substance is an electrolyte [MADT Bihar 1980]
 - (a) Chloroform
 - (b) Benzene
 - (c) Toluene
 - (d) Magnesium chloride
- 30. In weak electrolytic solution, degree of ionization(a) Will be proportional to dilution

(b) Will be proportional to concentration of electrolyte

(c) Will be proportional to the square root of dilution

(d) Will be reciprocal to the dilution

- 31. 0.2 molar solution of formic acid is ionized 3.2%. Its ionization constant is [MP PMT 1991]
 - (a) 9.6×10^{-3} (b) 2.1×10^{-4}
 - (c) 1.25×10^{-6} (d) 4.8×10^{-5}
- **32.** The best conductor of electricity is a 1.0 *M* solution of

[NCERT 1973]


- (a) Boric acid(b) Acetic acid[UPSEAT 2000, 02](d) Phosphoric acid(c) Sulphuric acid(d) Phosphoric acid
- 33. The colour of an electrolyte solution depends on [DPMT 1985]
 - (a) The nature of the anion
 - (b) The nature of the cation
 - (c) The nature of both the ions
 - (d) The nature of the solvent

34. Ionisation depends upon

- [CPMT 2004]
- (a) Pressure (b) Volume
- (c) Dilution (d) None of these
- 35. The values of dissociation constants of some acids (at 25°C) are as follows. Indicate which is the strongest acid in water [MP PMT 1991]
 - (a) 1.4×10^{-2} (b) 1.6×10^{-4}
 - (c) 4.4×10^{-10} (d) 4.3×10^{-7}



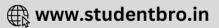
.	Concentration	CN^- in $0.1 M HCN$	is	(c) $SO_4^{}$	(d) NO_2^-	
	$[K_a = 4 \times 10^{-10}]$		10.	<i>NaOH</i> is a strong base	e because	[AIIMS 2001]
		[RPET 2000	o]	(a) It gives OH^- ion	(b) It can	be oxidised
	(a) $2.5 \times 10^{-6} M$	(b) $4.5 \times 10^{-6} M$		(c) It can be easily ion		
	(c) $6.3 \times 10^{-6} M$	(d) $9.2 \times 10^{-6} M$	11.	Which one of the follo Bronsted base	owing can be	e classified as a [KCET 2001]
	Acids	and Bases		(a) NO_3^-	(b) H_3O^+	
-	710100			(c) NH_4^+	(d) <i>CH</i> ₃ <i>C</i>	ООН
	Which of the follow (a) <i>CO</i>	ving is not a Lewis acid [MP PH (b) <i>SiCl</i> 4	ET 200 2] .	Which one of the fo highest proton affinity		stance has the [AIEEE 2003]
	(c) SO_3	(d) Zn^{2+}		(a) H_2O	(b) <i>H</i> ₂ <i>S</i>	
	Review the equili	brium and choose the corre	ct	(c) <i>NH</i> ₃	(d) <i>PH</i> ₃	
	statement $HClO_4 + $	$H_2O \rightleftharpoons H_3O^+ + ClO_4^-$ [RPMT 200	oo] 1 3 .	Which of the following	; is the stron	gest Lewis acid
	(a) $HClO_4$ is the co	onjugate acid of H_2O				[EAMCET 1998]
	(b) H_2O^+ is the cor	ijugate base of <i>H</i> ₂ <i>O</i>		(a) BI_3	(b) <i>BBr</i> ₃	
	-	jugate acid of H_3O^+		(c) BCl_3	(d <i>BF</i> ₃	
	_		14.	An aqueous solution of	ammonia co	
		jugate base of <i>HClO</i> ₄				[MP PET 2001]
•	A solution of <i>FeCl</i> ₃	in water acts as acidic due to		(a) <i>H</i> ⁺	(b) <i>OH</i> ⁻	
		[BVP 200]	3]	(c) NH_4^+	(d) NH_4^+ a	and OH^-
	(a) Hydrolysis of F(c) Dissociation	 (b) Acidic impurities (d) Ionisation 	15.	Which of the following		
		e having alkaline nature	in			[CBSE PMT 1996]
	solution is			(a) BF_3	(b) $FeCl_3$	
		[BVP 200	3]	(c) SiF_4	(d) $C_2 H_4$	
	(a) $NaNO_3$	(b) NH_4Cl	16.	The conjugate base of	NH_2^{-} is	[EAMCET 1998]
	(c) Na_2CO_3	(d) Fe_2O_3		(a) <i>NH</i> ₃	(b) NH ²⁻	
		wing can act both as Bronste base[MP PET 1995; MP PET/PM T		(c) NH_4^+	(d) N_3^-	
	(a) <i>Cl</i> ⁻	(b) HCO_{3}^{-}	17.	The strength of an acid	l depends on	•
	(c) H_3O^+	(d) <i>OH</i> ⁻		(a) Accept protons	(b) Donat	[MP PET 1996]
	Lewis acid	[MP PMT 198	7]	(c) Accept electrons		e electrons
	(a) Presence of <i>H</i> a	-	18.	Which is not a electrop		[RPET 1999]
	(b) Is a electron pa			(a) AlCl ₃	(b) <i>BF</i> ₃	
	(c) Always a proton			(c) $(CH_3)_3 C^+$	(d) NH_3	
	(d) Is a electron pa	A and B, $pK_a = 1.2$, $pK_b = 2.5$.8 19.	Ammonia gas dissolve	-	o give NH OH
•		ie, then which is true [Bihar M		In this reaction water		
	(a) A and B both ar			(a) An acid	(b) A base	
	(b) A is stronger th	an B		(c) A salt		jugate base
	(c) <i>B</i> is stronger th		20.	In the equilibrium	-	-
	(d) Neither A nor B	is strong		$CH_3COOH + HF \rightleftharpoons CH_3$	$COOH_2^+ + F^-$	[BHU 1987]
	(e) None of these			(a) F^- is the conjugate	-	соон
	Aq. solution of sodi (a) Acidic	um cyanide is [BHU 198 (b) Amphoteric	1]		5	
	(c) Basic	(d) Netural		(b) F^{-} is the conjugate		ato and a
		wing is the strongest conjuga	te CH ₃	(c) CH_3COOH is $_3COOH_2^+$	the conjug	ate acid of

					Ionic Equilibrium 353
	(d) $CH_3COOH_2^+$ is	the conjugate	base of	31.	<i>HNO</i> ₃ in liquid hydrogen fluoride behaves
CH_3	СООН	jugari			(a) As an acid
21.	The compound that is	not a Lewis acid is	[IIT 1985]		(b) As a base
	(a) BF_{3}	(b) $AlCl_3$			(c) Neither as a base nor as an acid
	(c) $BeCl_2$	(d) NH_3		~~	(d) As a base and as an acid
22.	Which of the following	-		32.	Aqueous solution of $CuSO_4.5H_2O$ changes blue litmus paper to red due to [CPMT 1979; MP PMT 1989
	a neutral solution	•	ADT 1980]		(a) Presence of Cu^{++} ions
	(a) $(NH_4)_2 SO_4$	(b) $Ba(NO_3)_2$			(b) Presence of $SO_4^{}$ ions
	(c) $CrCl_3$	(d) CuSO $_4$			(c) Hydrolysis taking place
23.	Which of the followin	g is the strongest ac	id [AMU 1982:]	(d) Reduction taking place
	(a) $H_3 PO_4$	(b) H_2SO_4		33.	In the following reaction
	(c) HNO_2	(d) CH_3COOH			$HC_2O_4^- + PO_4^{} \rightleftharpoons HPO_4^{} + C_2O_4^{}$
24.	An example of a Lewi	s acid is			Which are the two Bronsted bases [MP PMT 1991]
	_	ar 1982; AMU 1982; N			(a) $HC_2O_4^-$ and $PO_4^{}$ (b) $HPO_4^{}$ and $C_2O_4^{}$
	(a) <i>NaCl</i>	(b) <i>MgCl</i> ₂	JEE 2005]		(c) $HC_2O_4^-$ and $HPO_4^{}$ (d) $PO_4^{}$ and $C_2O_4^{}$
		(d) $SnCl_4$		34.	Which of the following is the weakest acid [CPMT 2
	(c) AlCl ₃	·		34.	(a) <i>HF</i> (b) <i>HCl</i>
25.	In the equilibrium <i>HC</i>				(c) <i>HBr</i> (d) <i>HI</i>
	(a) UCIO is the series	_	1981, 86]	35.	The degree of dissociation in a weak electrolyte
	(a) $HClO_4$ is the conjugate of the co				increases [CBSE PMT 1989; MP PMT 1997]
	(b) H_2O is the conjug	gate acid of H_3O^+			(a) On increasing dilution (b)On increasing press
	(c) H_3O^+ is the conjugation	gate base of H_2O			(c) On decreasing dilution (d) None of these
	(d) ClO_4^- is the conjug	gate base of $HClO_4$		36.	<i>H</i> ⁺ is a [MADT Bihar 1983]
6.	Which of the followin	g would be expecte	d to form		(a) Lewis acid (b) Lewis base
	ionic solution in wate				(c) Bronsted-Lowry base (d) None of the above Disconsistion of H_{RO} takes place in following
	(a) CCl_4	(b) <i>O</i> ₂		37.	Dissociation of H_3PO_4 takes place in following steps
	(c) NaBr	(d) $CHBr_3$			[CPMT 1976; NCERT 1987]
2 7 •	A solution of sodium				(a) 1 (b) 2
	(a) Phenolphthalein p		ERT 1971] range vellow	- 0	(c) 3 (d) 4 The aqueous solution of disodium hydrogen
	(c) Methyl orange red			30.	phosphate is
28.	Accepting the definit		-		[MADT Bihar 1982]
	donor, the acid if $M_{H} \rightarrow M_{H} \rightarrow M$	-			(a) Acidic (b) Neutral
	$NH_3 + H_2O \rightarrow NH_4^+ + O$			39.	(c) Basic (d) None Which of the following is a conjugated acid-base
	(a) NH_3	(b) <i>H</i> ⁺		39.	pair
	(c) NH_4^+	(d) H_2O			[MADT Bihar 1984; DPMT 2001]
9.	With reference to p				(a) $HCl, NaOH$ (b) NH_4Cl, NH_4OH
	following statements (a) PH_3 is more basic		PMT 1990]		(c) H_2SO_4 , HSO_4^- (d) KCN, HCN
	-	-		40.	The solution of strong acid and weak base
	(b) PH_3 is less basic t	-			(<i>FeCl</i> ₃) is
	(c) PH_3 is equally bas	-	-		[MADT Bihar 1981; CPMT 1979, 83, 84] (a) Acidic (b) Basic
	(d) PH_3 is amphoteric	-			(c) Neutral (d) None of the above
0.	NH_4OH is weak base		PMT 1979]	41.	The conjugate acid of HPO_3^{2-} is [EAMCET 1989]
	(a) It has low vapour(b) It is only slightly 1	-			(a) H_3PO_4 (b) H_3PO_3
	(c) It is not a hydroxi				(c) $H_2 PO_3^-$ (d) PO_4^{3-}
	(d) It has low density				

Get More Learning Materials Here : 💻

Topic Equilibrium 25

	554 Ionic Equilibri	lan			
2.		to the reaction between	53.	H_3BO_3 is	[IIT Screening 2003
	hydrogen ion and hydroxyl ion [MP PMT 1990] (a) Hydrogenation (b) Hydroxylation			(a) Monobasic and	
	(c) Hydrolysis	(d) Neutralization		(b) Monobasic and	
3.		ne weakest Lewis base is		(c) Monobasic and	-
		[NCERT 1981]		(d) Tribasic and we	
	(a) <i>H</i> ⁻	(b) <i>OH</i> ⁻	54.	In the reaction SnCl	$_2 + 2Cl^- \rightarrow SnCl_4$, Lewis acid is
	(c) <i>Cl</i> ⁻	(d) HCO_{3}^{-}			[EAMCET 1987
4.		The reater than pKa for acid B .		(a) $SnCl_2$	(b) <i>Cl</i> ⁻
	The strong acid is (a) Acid <i>B</i>	[DPMT 2000] (b) Acid A		(c) $SnCl_4$	(d) None of these
	(c) Both A and B	(d) Neither A nor B	55.	Lewis base is	[RPMT 1997
5.		<i>H</i> ⁻ ₂ is[IIT 1985; Roorkee 1995;		(a) CO_2	(b) SO_3
		IT 2000; MP PET 1996,2000]		(c) SO_2	(d) <i>ROH</i>
	(a) NH_3	(b) NH_4^+	56.	10 ml of 1 M H_2SO_4	will completely neutralise
	(c) NH_2OH	(d) $N_2 H_4$		(a) 10 ml of 1 M Na	OH solution
5.	Correct statement is	[CPMT 1985]		(b) 10 ml of 2 M Na	<i>aOH</i> solution
	(a) NH_4Cl gives alkaline	e solution in water		(c) 5 ml of 2 M KO	
	(b) CH_3COONa gives ac	cidic solution in water		(d) 5 ml of 1 M Na ₂	
	(c) CH_3COOH is a weak	k acid		-	. 5
	(d) NH_4OH is a strong	base	57.	which of the follow	ing compounds are diprotic [Pb. PMT 2000
7.	pK_a of a weak acid is de	efined as [JIPMER 1999]		(a) $H_2 PO_5$	(b) H_2S
	(a) $\log_{10} K_a$	(b) $\frac{1}{\log_{10} K_a}$		(c) $HClO_3$	(d) $H_3 PO_3$
		(d) $-\log_{10} K_a$ (d) $-\log_{10} \frac{1}{K_a}$	58.		<i>NaOH</i> solution is mixed with O_4 , the resulting mixture will
_	u	u		be	[AMU 2002]
3.		ed in water $(pH = 7)$, the		(a) Acidic	(b) Alkaline
	salt is made of	nes alkaline in nature. The		(c) Neutral	(d) Strongly alkaline
	Suit is made of	[CPMT 1983]	59.	The <i>pH</i> indicators a	
	(a) A strong acid and st	-		-	cids and strong bases
	(b) A strong acid and w			(b) Salts of weak ac(c) Either weak acid	
	(c) A weak acid and weak(d) A weak acid and street			(d) Either strong ac	
).	Which one is not an acid		60.		ing is not Lewis acid[BHU 199 7
	(a) NaH_2PO_2	(b) NaH_2PO_3		(a) BF_3	(b) <i>AlCl</i> ₃
	(c) NaH_2PO_4	(d) None		(c) $FeCl_3$	(d) PH_3
).		alkaline in solution. Which	61.	5	n acetate in water will[MNR 19
		nces could it be [CPMT 1989]	• - •		blue (b) Turn blue litmus red
	(a) Fe_2O_3	(b) Na_2CO_3		(c) Not effect litmu	
	(c) NH_4Cl	(d) $NaNO_3$	62.	<i>Cl</i> [−] is the conjugate	base of
	An aqueous solution of a	-		[NCERT 1979	; CPMT 1976; MP PET/PMT 1988
	1	[MP PMT 1989]		(a) $HClO_4$	(b) <i>HCl</i>
	(a) Weakly acidic	(b) Weakly basic		(c) HOCl	(d) <i>HClO</i> ₃
	(c) Strongly acidic	(d) Neither acidic nor	63.	Which of the follow	ring behaves as both Lewis and
isio				Bronsted base	[MP PMT 2003
2.		is added to 100 ml of		(a) <i>BF</i> ₃	(b) <i>Cl</i> ⁻
		ing solution will be[BHU 1996	J	(c) <i>CO</i>	(d) None of these
	(a) Acidic(c) Neutral	(b) Basic (d) Slightly basic	64.	The conjugate acid	of a strong base is a[EAMCET 1


Get More Learning Materials Here : 💻

Ionic	Equilibrium	355
-------	-------------	-----

					Ionic	: Equilibriur	n 355
5.	 (c) Strong base Which one is the weake (a) <i>HNO</i>₃ (c) <i>H</i>₂SO₄ 	(d) Weak ba st acid (b) <i>HClO</i> 4 (d) <i>HBr</i>	se [DPMT 2002]	76. 77.	Which of the anhydr contact with water tur (a) Ferrous sulphate (c) Zinc sulphate The species among th	ns blue (b) Coppe (d) Cobalt	[AMU 1981, 82] r sulphate sulphate
6.	Conjugate base of HPO_4^2 (a) PO_4^{3-}		MP PMT 1995]	,,,-	as an acid and a base is (a) HSO_4^-	s [AIEEE 20 (b) SO_4^{2-}	
	(c) H_3PO_4	(d) $H_4 PO_3$			(c) H_3O^+	(d) <i>Cl</i> ⁻	
7.	Which of the following f (a) <i>FeCl</i> ₃	is not Lewis ac (b) <i>AlCl</i> ₃	cid [RPET/PMT	207 <mark>8</mark>]	The strongest base from		ing species is [KCET 1996]
	(c) BCl_3	(d) <i>NH</i> ₃			(a) NH^{2-}	(b) OH^{-}	
8.	(i) A strong acid has a v	5	hase	70	(c) $O^{2^{-}}$ Which one is Lewis aci	(d) S^{2-}	
	(ii) An acid is an electro			7 9 .	(a) Cl^{-}	(b) Ag ⁺	[CPMT 1997]
	The above statements (i					(d) S^{2-}	
	(a) Correct			-	(c) C_2H_5OH		
	(b) Wrong			80.	The conjugate acid of <i>I</i>		[MP PET 1990]
	(c) (i) Correct and (ii) V	-			(a) $H_3 PO_4$	(b) $H_2 PO_2$	- 1
	(d) (i) Wrong and (ii) C				(c) PO_4^{3-}	(d) H_3O^+	
).	The <i>pH</i> is less than 7, of			81.	The conjugate acid of S	$S_2 O_8^{2-}$ is	[EAMCET 1984]
	(a) FeCl ₃	b. PMT 2002; N (b) NaCN	MP PM1 2003]		(a) $H_2 S_2 O_8$	(b) H_2SO_2	4
	(c) <i>NaOH</i>	(d) <i>NaCl</i>			(c) HSO_4^-	(d) $HS_2O_8^-$	-
				82.	In the reaction <i>BCl</i>	2 0	
•	In the reaction $I_2 + \Gamma \rightarrow$				base is	3	2 113,
		7; RPMT 2002;	BCECE 2005]				[EAMCET 1986]
	(a) I_2	(b) <i>I</i> ⁻			(a) BCl_3	(b) <i>PH</i> ₃	
	(c) I_3^-	(d) None of	these		(c) $Cl_3B - PH_3$	(d) None	of these
•	The strength of an acid	-	s tendency to UPSEAT 2001]	83.	Which of the following (a) The conjugate base		
	(a) Accept protons	-		base	(b) The conjugate base	of a weak	acid is a strong
	(c) Accept electrons	(d) Donate e		base	(b) The conjugate base	t of a weak	aciu is a strollg
•	In Lewis acid-base theo may be considered as		tion reaction [NCERT 1977]	base	(c) The conjugate base	e of a weak	acid is a weak
	(a) Formation of salt an(b) Competition for pro	tons by acid a	nd base		(d) The base and its co neutral solution	njugate acid	react to form a
	(c) Oxidation reduction			84.	What is the conjugate l	base of OH^-	[AIEEE 2005]
	(d) Coordinate covalent				(a) O ₂	(b) <i>H</i> ₂ <i>O</i>	
•	The salt that forms neut				(c) <i>O</i> ⁻	(d) O^{2-}	
	(a) NH_4Cl	(b) NaCl	EAMCET 1981]	85.	Which of the following	is a Lewis b	ase [BHU 1995]
	(c) Na_2CO_3	(d) $K_3 BO_3$			(a) <i>CH</i> ₄	(b) $C_2 H_5 C_2$)H
•	Which of the following Bronsted acid		s a Lewis or [DCE 2001]	86.	(c) Acetone The correct order of ac		dary amine s [CBSE PMT 200
	(a) BF_{3}	(b) <i>AlCl</i> ₃			(a) $HClO < HClO_2 < HCl$	$O_3 < HClO_4$	
	(c) $SnCl_4$	(d) <i>CCl</i> ₄			(b) $HClO_4 < HClO < HCl$	$O_2 < HClO_3$	
•	Which one of the follo				(c) $HClO_2 < HClO_3 < HClO_3$	$ClO_4 < HClO$	
	solution in water (a) $CH COON_{a}$	_	MP PET 2002]		(d) $HClO_4 < HClO_3 < HClO_3$	-	
	(a) CH_3COONa	(b) <i>NH</i> ₄ <i>Cl</i>					
	(c) NaCl	(d) CH_3COO	NL	87.	The strongest acid is		[DPMT 2000]

Get More Learning Materials Here : 💻

	356 Ionic Equilib	rium				
	(c) H_3PO_3	(d) $H_3 PO_4$		(c) Accepts a lone j		
8.	Which of the following	is the strongest base[Roor	kee 2000]	(d) Donates a lone	pair of electrons	3
	(a) $C_2 H_5^-$	(b) $C_2 H_5 COO^-$	99.	Water is a		[KCET 2002]
	(c) $C_2 H_5 O^-$	(d) <i>OH</i> ⁻		(a) Amphoteric acid(c) Protophobic sol	-	
).		n of which one of th	ne 100.	Conjugate base of		[RPMT 2002]
•	following is basic			(a) NH_4^{\oplus}	(b) <i>NH</i> [⊕] ₂	
	-	[MP PMT 2002	1]		_	
	(a) HOCl	(b) NaHSO $_4$		(c) NH_2^{Θ}	(d) N_2	
	(c) NH_4NO_3	(d) NaOCl	101.	Which of the follow		
	Which of the following	is the weakest base [IIT 19	80]	a conjugate base of		[NCERT 1981]
	(a) NaOH	(b) $Ca(OH)_2$		(a) HSO_{4}^{-}	(b) H_2SO_4	Ļ
	(c) NH_4OH	(d) <i>KOH</i>		(c) <i>OH</i> ⁻	(d) $H_3 O^+$	
		for strong acid and wea	1 02. Ik	Which of the follow	ving is Lewis aci 978; EAMCET 198	
	base is			-	978; EAMCET 198 MT 1990; AFMC 19	
		[RPMT 1997; UPSEAT 2002	2]	(a) <i>BF</i> ₃	(b) <i>Cl⁻</i>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	(a) Methyl orange	(b) Methyl red		(c) H_2O	(d) NH_3	
	(c) Phenol red	(d) Phenolphthalein	400	-	5	
•	Among the following ac	cids, the weakest one is [NCERT 1984]		According to Bron substance which is	-	-
	(a) <i>HF</i>	(b) <i>HCl</i>		(a) A proton donor		
	(c) HBr	(d) <i>HI</i>		(b) An electron pai	=	
•	_	naves as in the reaction		(c) A proton accept		
	$HCl + HF \rightarrow H_2^+Cl + F^-$	[JIPMER 200		(d) An electron pai Which of the follow		hydronium ion
	(a) Weak base	(b) Weak acid	104.	which of the follow	ing is known as	[NCERT 1976]
	(c) Strong base	(d) Strong acid		(a) <i>H</i> ⁺	(b) $H_2 O^+$	[
•		a strong acid is a[EAMCET 1	1978]		_	
	(a) Strong base	(b) Strong acid		(c) $H_3 O^+$	(d) $H_2 O_2^+$	
	(c) Weak acid	(d) Weak base		An aqueous solutio show	n of aluminium	sulphate would
•	(a) $H(ClO)O_2$	wing is strongest acid[BHU	2005]	5110 W		[NCERT 1977]
	(a) $H(ClO)O_2$ (c) $H(ClO)O$	(b) <i>H(ClO)O</i> ₃ (d) <i>H(ClO</i>)		(a) An acidic reacti	on	L 0,,,]
				(b) A neutral react	ion	
•	In the reaction $2H_2O \rightleftharpoons$		-	(c) A basic reaction		
	(a) A weak base	[MP PET 1989	-	(d) Both acidic and		
	(b) A weak acid		106.	The aqueous solut acidic due to	tion of aluminit	um chloride is
	(c) Both a weak acid a	nd a weak base		actuic due to		[MNR 1986, 88]
	(d) Neither an acid nor			(a) Cation hydrolys	sis	[
•	In the reaction <i>HCl</i> + <i>H</i>			(b) Anion hydrolys		
		22 CERT 1978; EAMCET 1982, 89	1	(c) Hydrolysis of b	oth anion and ca	tion
	(a) H_2O is the conjugation		1	(d) Dissociation		
	-		107.	HSO_4^- is the conjug	gate base of	[NCERT 1977]
	(b) Cl^{-} is the conjugate			(a) <i>H</i> ⁺	(b) H_2SO_3	
	(c) Cl^{-} is the conjugate	-		(c) SO_4^{2-}	(d) H_2SO_4	
	(d) H_3O^+ is the conjugation	ate base of HCl	100	An acid is a compo		
•	According to Lewis con which	cept, an acid is a substanc	ce 108.	Lowry concept)		[EAMCET 1975]
		[EAMCET 1981; NCERT 198	1;	(a) An electron	(b) A prot	
		CPMT 1986; MP PMT 1987	7]	(c) An electron and	-	
	(a) Accepts protons		109.	The conjugate base	ot sulphuric aci	
	(b) Donates protons					[EAMCET 1974]

Get More Learning Materials Here : 💻

Ionic Equilibrium 357 121. The aqueous solution of $AlCl_3$ is acidic due to the (a) Sodium hydroxide (b) Hydrochloric acid (c) Bisulphate ion (d) Barium hydroxide hydrolysis of [UPSEAT 2001, 02] 110. Which is strongest Lewis base [CPMT 1994] (a) Aluminium ion (b) Chloride ion (a) SbH_3 (b) AsH_3 (c) Both aluminium and chloride ion (c) PH_3 (d) NH_3 (d) None of these 111. According to Bronsted principle, an aqueous 122. Which shows weak ionisation in water [MH CET 2001] solution of HNO₃ will contain [MP PMT/PET 1988] (a) H_2SO_4 (b) NaCl (a) NO_2^- (b) NO_3^- (d) NH_3 (c) HNO_3 (d) NO^+ (c) NO_{2}^{+} 123. An organic dye, cosine used to detect end point of precipitation titration by adsorption is called 112. Aqueous solution of an acid is characterised by the presence of [MH CET 1999] (a) Absorption indicator (b) Adsorption indicator [NCERT 1977] (c) Chemical indicator (d) None of these (a) H^+ ions (b) H_2^+ ions 124. The indicator used in the titration of iodine (c) H_3O^+ ions (d) $H_A O^+$ ions against sodium thiosulphate is [AFMC 2002] 113. Ammonium ion is [RPMT 1999; KCET 2002] (a) Starch (b) $K_3 Fe(CN)_6$ (a) Neither an acid nor base (b)Both an acid and a base (c) $K_2 CrO_4$ (d) Potassium (c) A conjugate acid (d) A conjugate base 125. Phenolphthalein does not act as an indicator for **114.** Aqueous solution of $AlCl_3$ is [RPMT 2002] the titration between [Pb. PMT 2002] (a) Acidic (a) NaOH and CH_3COOH (b) Basic (c) Amphoteric (d) None of these (b) $H_2C_2O_4$ and $KMnO_4$ 115. The species which acts as a Lewis acid but not a (c) $Ba(OH)_2$ and HClBronsted acid is [MP PMT 1999; Kurukshetra CET 2002] (d) KOH and H_2SO_4 (b) O^{2-} (a) NH_{2}^{-} 126. Which is not example of Bronsted Lowry theory (c) *BF*₃ (d) OH^- [AIEEE 2003] (a) $AlCl_3$ (b) H_2SO_4 116. Among the following, the weakest base is[MP PMT 2002] (d) HNO_3 (c) SO_2 (a) *H*⁻ (b) CH_{3}^{-} 127. An aqueous solution of sodium carbonate is (c) CH_3O^- (d) Cl⁻ alkaline because sodium carbonate is a salt of [MP PET 20 117. Which of the following is not lewis base (a) Weak acid and weak base [EAMCET 1975; RPMT 2002] (b) Strong acid and weak base (a) NH_3 (b) PH_3 (c) Weak acid and strong base (c) $(CH_3)_3 N$ (d) HN_3 (d) Strong acid and strong base **128.** The acid that results when a base accepts a proton **118.** pK_a value of the strongest acid among the is called following is [Kerala (Med.) 2002] [MP PMT 1990] (a) Conjugate base of the acid (a) 3.0 (b) 4.5 (b) Conjugate protonated base (c) 1.0 (d) 2.0 (c) Lewis base 119. The most acidic compound in water is [CBSE PMT 2001] (d) Conjugate acid of the base (a) $AlCl_3$ (b) $BeCl_2$ (e) None of these (c) $FeCl_3$ (d) None of these **129.** Ammonia gas dissolves in water to form $NH_{A}OH$. **120.** BF_3 is used as a catalyst in several industrial In this reaction water acts as[KCET (Engg./Med.) 1999] processes due to its [Kerala (Med.) 2002] (a) A conjugate base (b) A non-polar solvent (a) Strong reducing agent (c) An acid (d) A base (b) Weak reducing agent 130. The conjugate base in the following reaction (c) Strong Lewis acid nature $H_2SO_4 + H_2O \rightleftharpoons H_3O^+ + HSO_4^-$ [DCE 1999] (d) Weak Lewis acid character (a) H_2O (b) HSO_4^-

Get More Learning Materials Here : 📕

CLICK HERE

≫

	(c) H_3O^+	(d) SO_2		(b) Which provide H^+	
31.	An aqueous solution	of aluminium sulphate shows		(c) Which give electron pair	
		[DPMT 2001]		(d) Which accept OH^-	ion
	(a) A basic nature		143.	The conjugate base of	HCO_3^- is
	(b) An acidic nature			(a) H_2CO_3	(b) CO_3^{2-}
	(c) A neutral nature(d) Both acidic and b	acic naturo		(c) <i>CO</i> ₂	
82.		acid with a base invariably	144	2	$BF_3 \rightleftharpoons NH_3 \rightarrow BF_3, BF_3$ is
,	results in the product			CPMT 1983]	[MP PMT 1989; MHCET 2001]
	(a) $H_3 O^+$	(b) <i>OH</i> ⁻		(a) Lewis acid	[MI 1 MI 1909, MIICEI 2001]
	(c) H_2O	(d) H^+ and OH^-		(b) Lewis base	
2	The conjugate acid of			(c) Neither Lewis acid	l nor Lewis base
3.				(d) Lewis acid and Lev	wis base both
		MT 1987, 90, 91; EAMCET 1993] (b) PO_4^{3-}	145.	The strongest Lewis ba	-
	(a) $H_2 PO_4^-$				[MP PET/PMT 1988]
	(c) H_3PO_4	(d) H_3PO_3		(a) CH_3^{-}	(b) <i>F</i> ⁻
4.	Which of the following	ng is not used as a Lewis acid		(c) NH_2^{-}	(d) <i>OH</i> ⁻
	(a) $SnCl_4$	[MP PET 2000] (b) <i>FeCl</i> ₃	146.	The aqueous solution of	of <i>CuSO</i> ₄ is [CPMT 1985]
	(c) <i>KCl</i>	(d) BF_3		(a) Acidic	(b) Basic
_		5		(c) Neutral	(d) Amphoteric
5.	(a) Monobasic	ueous medium is [AMU 2000] (b) Dibasic	147.	The acid having the h	ighest pK_a value among the
	(c) Tribasic	(d) All are correct		following is	[JIPMER 2002]
6.		concept which one of the		(a) HCOOH	(b) CH_3COOH
	•	e[MP PET/PMT 1988; Pb. CET 200	93]	(c) $ClCH_2COOH$	(d) FCH_2COOH
	(a) <i>OH</i> ⁻	(b) H_2O	148.		in the titration of sodium
	(c) Ag ⁺	(d) NH_3		carbonate with sulphu	rric acid is [DPMT 2001]
3 7.	The aqueous solution	of ammonium chloride is		(a) Phenolphthalein(b) Methyl orange	
	-	[CPMT 1987]		(c) Potassium ferrocy	nide
	(a) Neutral	(b) Basic		(d) Potassium ferricyn	
.0	(c) Acidic	(d) Amphoteric	149.	According to Bronsted	
о.	acid is BCl_3	$+PH_3 \rightarrow BCl_3: PH_3$ The Lewis			[MP PET/PMT 1988]
	aciu is	[RPMT 2000]		(a) Base	(b) Acid
	(a) <i>PH</i> ₃	(b) <i>BCl</i> ₃		(c) Acid and base both	
	(c) Both	(d) None	150.	Which of the following	
9.	The conjugate acid of	f NH ₃ is			[MP PET/PMT 1988]
	[BHU	J Varanasi 1999; Pb. PMT 2004]		(a) H_2O	(b) $H_3 O^+$
	(a) NH_3	(b) NH_4^+		(c) H_2	(d) <i>HCl</i>
	(c) N_2H_4	(d) NH_2OH	151.	Conjugate base of <i>HBr</i>	
о.	Which halide of nitro	gen is least basic [DPMT 2001]		(a) H_2Br^+	(b) <i>H</i> ⁺
	(a) NBr_3	(b) <i>NI</i> ₃		(c) <i>Br</i> ⁻	(d) Br^+
	(c) <i>NCl</i> ₃	(d) <i>NF</i> ₃	152.		lization of <i>NaOH</i> with <i>HCl</i>
1.		soluble in water, then its			of KOH with HNO_3 is [MP PMT
	solution represents v	vhich of the characteristics [MP	PET/PI	wfa19885s	(b) More
	(a) Amphoteric	(b) Acidic		(c) Equal	(d) Depends on pressure
	(c) Basic	(d) Neutral	153.		g is not a Lewis acid [J & K 2005
ļ2 .	Lewis acid are those			(a) BF_{3}	(b) $AlCl_3$
	(a) Which accept elec	ctron pair		(c) <i>HCl</i>	(d) $LiAlH_4$

Get More Learning Materials Here : 📕

154.		ither accepts proton nor	163.	Stror
	donates proton is called			(a) (
	(a) Amphoteric	(b) Neutral		(c) <i>l</i>
	(c) Aprotic	(d) Amphiprotic	164.	The o
155.		aeous solution $Zn^{2+} + X^- \rightleftharpoons$ st when X is[Pb. PMT 1998]	1	(a) <i>I</i>
	(a) <i>F</i> ⁻	(b) NO_3^-		(c) <i>I</i>
	(c) ClO_4^-	(d) <i>I</i> ⁻	165.	Conj
156.	Why are strong acids g	enerally used as standard		(a) S
	solutions in acid-base ti (a) The <i>pH</i> at the equi	trations [Pb. PMT 1998] walence point will always		(c) <i>I</i>
be 7	_		Cor	nmor
	(b) They can be used t	o titrate both strong and		duct,
,			P . C	
weal	k bases		-	
		nore stable solutions than	1.	The
	(c) Strong acids form r		1.	Al_2 (S
weal	(c) Strong acids form r(c) acids(d) The salts of strong a		1.	
weal	(c) Strong acids form r(c) acids(d) The salts of strong a	cids do not hydrolysed	1.	Al_2 (S
weal	 (c) Strong acids form r acids (d) The salts of strong a For an aqueous solution 	cids do not hydrolysed	1. 2.	Al ₂ (S (a) 1
weal	 (c) Strong acids form r acids (d) The salts of strong a For an aqueous solution 	cids do not hydrolysed ution, the characteristic		Al ₂ (S (a) I (c) I
weal	 (c) Strong acids form r acids (d) The salts of strong a For an aqueous solution species of acid is 	cids do not hydrolysed ution, the characteristic [RPMT 1999]		Al ₂ (S (a) <i>l</i> (c) <i>l</i> On a
weal	(c) Strong acids form r acids (d) The salts of strong a For an aqueous solu- species of acid is (a) H^+ ion (c) H_2^+ ion	tion, the characteristic [RPMT 1999] (b) H_3O^+ ion		<i>Al</i> ₂ (S (a) <i>I</i> (c) <i>I</i> On a of an
weal	(c) Strong acids form r acids (d) The salts of strong a For an aqueous solu- species of acid is (a) H^+ ion (c) H_2^+ ion	The characteristic (ation, the characteristic [RPMT 1999] (b) H_3O^+ ion (d) H_4O^+ ion		Al ₂ (S (a) <i>I</i> (c) <i>I</i> On a of an (a) I
weal	(c) Strong acids form r c acids (d) The salts of strong a For an aqueous solu species of acid is (a) H^+ ion (c) H_2^+ ion Which is a Lewis base [6]	The characteristic [RPMT 1999] (b) H_3O^+ ion (d) H_4O^+ ion [CPMT 1988; JEE Orissa 2004]		Al ₂ (2 (a) <i>I</i> (c) <i>I</i> On a of an (a) <i>I</i> (b) C

- 159. For a weak acid, the incorrect statement is [Pb. PMT 2004](a) Its dissociation constant is low
 - (b) Its pK_a is very low
 - (c) It is partially dissociated
 - (d) Solution of its sodium salt is alkaline in water
- **160.** Boron halides behave as Lewis acids, because of their
 - [CBSE PMT 1996; BHU 2004]
 - (a) Ionic nature(b) Acidic nature(c) Covalent nature(d) Electron defi

(c) Covalent nature (d) Electron deficient nature

161. Would gaseous *HCl* be considered as an Arrhenius acid

[UPSEAT 2004]

CLICK HERE

>>

- (a) Yes
- (b) No
- (c) Not known
- (d) Gaseous *HCl* does not exist
- **162.** Which one of the following is called amphoteric solvent

		[UP3EAI 2004]
(a) Ammonium hydroxid	e (b)	Chloroform
(c) Benzene	(d) Wa	ter

Strongest conjugate base	e is	[DPMT 2004]
(a) <i>Cl</i> ⁻	(b) <i>Br</i> ⁻	
(c) <i>F</i> ⁻	(d) <i>I</i> ⁻	
The conjugate base of H	$_2PO_4^-$ is	[AIEEE 2004]
(a) $H_3 PO_4$	(b) P_2O_5	
(c) PO_4^{3-}	(d) HPO_4^{2-}	
Conjugate base of HSO_4^-	is [M	IH CET 2004]
(a) SO_4^{2-}	(b) H_2SO_4	
(c) $H_3SO_4^+$	(d) None of	these
	(a) Cl^- (c) F^- The conjugate base of H (a) H_3PO_4 (c) PO_4^{3-} Conjugate base of HSO_4^- (a) SO_4^{2-}	(c) F^- (d) I^- The conjugate base of $H_2PO_4^-$ is(a) H_3PO_4 (b) P_2O_5 (c) PO_4^{3-} (d) HPO_4^{2-} Conjugate base of HSO_4^- is[M](a) SO_4^{2-} (b) H_2SO_4

Common ion effect, Isohydric solutions, Solubility product, Ionic product of water and Salt hydrolysis

1.	The expression for the solubility $Al_2(SO_4)_3$ is	v product of
	(a) $K_{sp} = [Al^{3+}] (SO_4^{2-}]$ (b) $K_{sp} = [Al^{3+}]$	$[{}^{3+}]^2 (SO_4^{2-}]^3$
	(c) $K_{sp} = [Al^{3+}]^3 (SO_4^{2-})^2$ (d) $K_{sp} = [Al^{3+}]^3 (SO_4^{2-})^2$	$[{}^{3+}]^2 (SO_4^{2-}]^2$
2.	On addition of ammonium chloride of ammonium hydroxide [CPMT 19 NCERT 1976, 77; MP PMT 1989, 9 (a) Dissociation of <i>NH</i> ₄ OH increases	to a solution 976, 80, 81, 99; 9; DPMT 1983]
	(b) Concentration of <i>OH</i> ⁻ increases	
	(c) Concentration of <i>OH</i> ⁻ decreases	
	(d) Concentration of NH_4^+ and OH^- in	ncreases
0 0 4]	The solubility product of a salt has formula MX_2 , in water is : 4	
	concentration of M^{2+} ions in the aqu	eous solution
	of the salt is [AIEEE 2005	
	(a) $2.0 \times 10^{-6} M$ (b) 1.0×10^{-2}	⁴ M
	(c) $1.6 \times 10^{-4} M$ (d) 4.0×10^{-7}	
4.	In a saturated solution of electroly product of their concentration are constant temperature and this	e constant at
	electrolyte is known as	[CPMT 1983]
	(a) Ionic product (b) Solubili	ty product
	(c) Ionization constant (d) Dissocia	ation constant
5۰	If the solubility product K_{sp} of a spa	ringly soluble
	salt MX_2 at 25°C is 1.0×10^{-11} , the	•
	the salt in <i>mole litre</i> ⁻¹ at this tempera	
	(a) 2.46×10^{14} (b) 1.36×10^{14}	
-	(c) 2.60×10^{-7} (d) 1.20×10	
6.	The unit of ionic product of water K_{μ}	
		SEAT 2001, 02]
	(a) $Mol^{-1}L^{-1}$ (b) $Mol^{-2}L^{-2}$ (c) $Mol^{-2}L^{-1}$ (d) $Mol^{2}L^{-2}$	
_	(c) Mol^{-L} (d) Mol^{-L}	$(1)^{2+} E^{2+} Z^{+}^{2+}$
7.		
	and Hg^{2+} is treated with $10^{-16}M$ su	upniae ion. If

🕀 www.studentbro.in


Get More Learning Materials Here :

	Jee reine rquin				
	K_{sp} of MnS, FeS, ZnS	and HgS are $10^{-15}, 10^{-23}, 10^{-20}$		(d) Both sulphides pred	cipitate
	and 10^{-54} respectivel first	y, which one will precipitate	16.	water will get hydrolys	
		[IIT Screening 2003]			BSE PMT 1989; MP PET 1999
	(a) <i>FeS</i>	(b) <i>MgS</i>		(a) <i>NaCl</i>	(b) NH_4Cl
	(c) <i>HgS</i>	(d) <i>ZnS</i>		(c) <i>KCl</i>	(d) Na_2SO_4
•	Let the solubility of $M_g(OH)_2$ be <i>x</i> then its	of an aqueous solution of $k_{\rm m}$ is [AIEEE 2002]	17.	The aqueous solution o	-
	(a) $4x^3$	(b) $108 x^5$			[CPMT 1972, 79, 83, 84
	(a) $4x$ (c) $27x^4$	(d) $9x$			P PET/PMT 1988; RPMT 2000
•		$act of BaSO_4$ at 25°C is		(a) Acidic impurities	(b) Ionisation
•			40	(c) Hydrolysis	(d) Dissociation
	H_2SO_4 necessary to	ld be the concentration of precipitate $BaSO_4$ from a	18.		'l is formed when equa wing are mixed. [K _{sp} fo
	solution of $0.01 M Ba^{2}$	ions		$AgCl = 10^{-10}$]	[KCET 2005]
	(a) 10 ⁻⁹	[RPMT 1999] (b) 10 ⁻⁸		(a) $10^{-4} M AgNO_3$ and	$10^{-7} M HCl$
	(c) 10^{-7}	(d) 10^{-6}		(b) $10^{-5} M AgNO_3$ and	$10^{-6} M HCl$
о.		er of a sparingly soluble salt		-	
	-	l^{-1} . Its solubility product		(c) $10^{-5} M AgNO_3$ and 1 (d) $10^{-6} M AgNO_3$ and 1	
	number will be			-	
	15	[AIEEE 2003]	19.	-	ver chromate in 0.01 l
	(a) 4×10^{-15}	(b) 4×10^{-10}		= :	n^{-3} . The solubility produce
	(c) 1×10^{-15}	(d) 1×10^{-10}		of silver chromate will	
1.	The solubility of Cal	F_2 is a <i>moles/litre</i> . Then its		(a) 8×10^{-24}	(b) 16×10^{-24}
	solubility product is .	[Orissa JEE 2002]		(c) 1.6×10^{-18}	(d) 16×10^{-18}
	(a) s^2 (c) $3s^2$	(b) $4s^{3}$ (d) s^{3}	20.	metallic elements give	containing two different test for only one of them i
2.	.,	t of <i>HCl</i> gas in a saturated		solution. Such salts are	
2.	solution of <i>NaCl</i> , the			(a) Double salts(c) Complex salts	(b) Normal salts (d) Basic salts
		[CPMT 1989; CBSE PMT 1989]		-	
	(a) Increases	(b) Decreases	21.	What is the pH value of	of $\frac{N}{1000}$ KOH solution
		ed (d) <i>NaCl</i> decomposes			MNR 1986, 91; Pb. CET 2004
3.		ect representation of the		(a) 10 ⁻¹¹	(b) 3
-		stant of Ag_2CrO_4 [NCERT 1974,]	75]	(c) 2	(d) 11
	(a) $[Ag^+]^2 [CrO_4^{-2}]$	(b) $[Ag^+][CrO_4^{-2}]$	22.	Mohr's salt is a	[MNR 1986
				(a) Normal salt	(b) Acid salt
	(c) $[2Ag^+][CrO_4^{-2}]$	(d) $[2Ag^+]^2 [CrO_4^{-2}]$		(c) Basic salt	(d) Double salt
4.	The solubility of C	CaF_2 is 2×10^{-4} moles / litre. Its	23.	Aqueous solution of so	
	solubilily product (K_{sp})) is[NCERT 1981; BHU 1983, 86;			MNR 1978; CPMT 1971, 80, 8 T Bihar 1982; MP PMT 1985;
		MP PET 1992; CBSE PMT 1999]		(a) Neutral	(b) Weakly acidic
	(a) 2.0×10^{-4}	(b) 4.0×10^{-3}		(c) Strongly acidic	(d) Alkaline
	(c) 8.0×10^{-12}	(d) 3.2×10^{-11}	24.		alternate for hydrolysi
_		a sulphide <i>MS</i> is 3×10^{-25} and		constant of NH_4CN	[CBSE PMT 1989
5.		lphide <i>NS</i> is 4×10^{-40} . In		(a) $\sqrt{\frac{K_w}{K_a}}$	(b) $\frac{K_w}{K_a \times K_b}$
		[NCERT 1981]			
	(a) Only <i>NS</i> gets prec	ipitated		(c) $\sqrt{\frac{K_b}{c}}$	(d) $\frac{K_a}{K_b}$
	(b) Only MS gets prec		25.	Which of the following	salts undergoes hydrolysis
	(c) No sulphide preci	pitates	-5.		PMT 1972, 74, 78; DPMT 1985
				-	

[[]CPMT 1972, 74, 78; DPMT 1985]

Get More Learning Materials Here : 💻

CLICK HERE **》**

					nic Equilibrium 361
	(a) CH_3COONa	(b) KNO_3	36.		ly soluble in water and gives
	(c) <i>NaCl</i>	(d) $K_2 SO_4$			with a <i>pH</i> of about 9. The sa
6.	What will happen if <i>C</i>	CCl_4 is treated with AgNO ₃		would be	[Pb. PMT 199
		[DPMT 1983]		(a) NH_4NO_3	(b) CH_3COONa
	(a) A white ppt. of Ag	<i>Cl</i> will form		(c) CH_3COONH_4	5
	(b) NO_2 will be evolv	ed	37.		ed with sodium acetate, the
	(c) CCl_4 will dissolve	e in AgNO ₃	3/•	H^+ ion concentration	•
	(d) Nothing will happ	en		(a) Increased	(b) Decreased
7.		tation for solubility product		(c) Remains unchan	ged (d) <i>pH</i> decreased
	of SnS ₂ is		38.	Solubility of AgCl w	vill be minimum in
	[CPMT 1	977; MP PET 1999;RPMT 2000]			[CBSE PMT 199
	(a) $[Sn^{4+}][S^{2-}]^2$	(b) $[Sn^{2+}] [S^{2-}]^2$		(a) $0.001 M AgNO_3$	(b) Pure water
	(c) $[Sn^{2+}][2S^{2-}]$	(d) $[Sn^{4+}][2S^{2-}]^2$		(c) $0.01 M CaCl_2$	(d) 0.01 <i>M NaCl</i>
3.		um oxalate will not dissolve	39.	In absence of form	ation of complex ions by th
	in	uni oxalate will not dissolve			on ion, the solubility of a give
		[CPMT 1971, 89; IIT 1986]		salt is	[BHU 197
	(a) <i>HCl</i>	(b) <i>HNO</i> ₃		(a) Increased	
	(c) Aquaregia	(d) CH ₃ COOH		(b) Decreased	
).	Baking soda is	[RPMT 2000]		(c) Unaffected(d) First increased a	and then deeneed
,.	(a) Basic salt	(b) Acidic salt	40.		lubility product of <i>PbCl</i> ₂
	(c) Complex salt	(d) Double salt	40.		
).		lowing substances will be a			l be the solubility of <i>PbCl</i> ₂
	mixed salt	0		moles/litre	
		[DPMT 1982; CPMT 1972]		(a) 6.3×10^{-3}	[MP PMT 1990; CPMT 1985, 9 (b) 1.0×10 ⁻³
	(a) $NaHCO_3$				
	(b) <i>Ca(OCl)Cl</i>			(c) 3.0×10^{-3}	(d) 4.6×10^{-14}
	(c) $K_2 SO_4 Al_2 (SO_4)_3.24$	H_2O	41.	Solubility product is	[CET Pune 199] uct of an electrolyte in i
	(d) $Mg(OH)Br$			saturated solution	-
l.	Solubility product	of $BaCl_2$ is 4×10^{-9} . Its		(b) The product of	the solubilities of the ions
	solubility in moles/lit	re would be		the electrolyte	
	[AFMC 1	982; Roorkee 1990; BHU 2000]		-	olubilities of the salts
	(a) 1×10^{-3}	(b) 1×10^{-9}		-	he concentration of the ions
	(c) 4×10^{-27}	(d) 1×10^{-27}	42.	Ionic product of wat	AP PET 1986; MP PET/PMT 198
2.		rill have lowest value of			LIDMED 200
	solubility product at r	normal temperature $(25^{\circ}C)$ [II]	Г 1990;	(a) Pressure is redu	ced (b) H^+ is added
	(a) $Mg(OH)_2$	(b) $Ca(OH)_2$		(c) OH^- is added	(d) Temperature
	(c) $Ba(OH)_2$	(d) $Be(OH)_2$	incr	eases	· · · · ·
3.	Which will not be hyd	rolysed [MP PMT 1989]	43.	Which one is a mixe	
	(a) Potassium nitrate			(a) NaHSO $_4$	(b) NaKSO $_4$
	(b) Potassium cyanide			(c) $K_4 Fe(CN)_6$	(d) <i>Mg</i> (<i>OH</i>) <i>Cl</i>
	(c) Potassium succina(d) Potassium carbona		44.	If K_{sp} for $HgSO_4$ i	s 6.4×10^{-5} , then solubility
	Which pair will show			the salt is	
۱.	_	P PMT 1990, 99; Pb. PMT 2001]			2000; CPMT 2000; JIPMER 200
Į.	(a) $BaCl_2 + Ba(NO_3)_2$	(b) $NaCl + HCl$		(a) 8×10^{-3}	(b) 8×10^{-6}
1.	(a) $Duci_2 + Du(NO_3)_2$			(c) 6.4×10^{-5}	(d) 6.4×10^{-3}
Į.		(d) $AgCN + KCN$			
4. 5.			45.		of $BaSO_4$ in water
	(c) $NH_4OH + NH_4Cl$		45∙	The solubility of	of $BaSO_4$ in water its solubility product will b

Get More Learning Materials Here : 💶

	(a) 1×10^{-5}	(b)	1×10^{-10}
	(c) 1×10^{-15}	(d)	1×10^{-20}
ļ6.	The solubility of	AgCl in	0.2 M NaCl
	$(K_{sp} \text{ for } AgCl = 1.20 \times$	(10^{-10}) is	[MP
	(a) 0.2 <i>M</i>	(b)	$1.2 \times 10^{-10} M$
	10		10

(c) $0.2 \times 10^{-10} M$ (d) $6.0 \times 10^{-10} M$

- 47. The solubility of Agl in Nal solution is less than that in pure water because [UPSEAT 2001]
 (a) Agl forms complex with Nal
 - (b) Of common ion effect

4

- (c) Solubility product of AgI is less than that of NaI
- (d) The temperature of the solution decreases
- **48.** The solubility product of $BaSO_4$ is 1.5×10^{-9} . The precipitation in a 0.01 *M* Ba^{2+} solution will start, on adding H_2SO_4 of concentration [CPMT 1988]
 - (a) $10^{-9}M$ (b) $10^{-8}M$ (c) $10^{-7}M$ (d) $10^{-6}M$
- **49.** At 20° *C*, the Ag^+ ion concentration in a saturated solution of Ag_2CrO_4 is 1.5×10^{-4} mole / litre. At 20° *C*, the solubility product of Ag_2CrO_4 would be
 - [MP PET 1997; MP PMT 1999]
 - (a) 3.3750×10^{-12} (b) 1.6875×10^{-10}

(c) 1.6875×10^{-12} (d) 1.6875×10^{-11}

50. The solubility of $PbCl_2$ is [MP PMT 1995; DCE 1999]

(a) $\sqrt{K_{sp}}$ (b) $\sqrt[3]{K_{sp}}$ (c) $\sqrt[3]{\frac{K_{sp}}{4}}$ (d) $\sqrt{8K_{sp}}$

51. The solubility product of AgCl is 1.44×10^{-4} at $100 \,^{o}C$. The solubility of silver chloride in boiling water may be

[MP PMT 1994; Bihar MEE 1998] (a) $0.72 \times 10^{-4} M$ (b) $1.20 \times 10^{-2} M$

(c)
$$0.72 \times 10^{-2} M$$
 (d) $1.20 \times 10^{-4} M$

52. If the solubility of a sparingly soluble salt of the type BA₂ (giving three ions on dissociation of a molecule) is x moles per litre, then its solubility product is given by [BHU 1987]

(a)	x^2	(b)	$2x^{3}$
(c)	$4x^{2}$	(d)	$4x^3$

53. The solubility product of Ag_2CrO_4 is 32×10^{-12} . What is the concentration of CrO_4^- ions in that solution

	[BHU 1997; DPMT 2004]
(a) $2 \times 10^{-4} m / s$	(b) $16 \times 10^{-4} m / s$
(c) $8 \times 10^{-4} m / s$	(d) $8 \times 10^{-8} m / s$

- 54. The addition of *HCl* will not suppress the ionization of [MP PET 1993] (a) Acetic acid (b) Benzoic acid (c) H_2S (d) Sulphuric acid 55. On the addition of a solution containing CrO_4^{2-} ions to the solution of Ba^{2+} , Sr^{2+} and
 - Ca^{2+} ions, the precipitate obtained first will be of
[MP PMT 1993](a) $CaCrO_4$ (b) $SrCrO_4$
 - (c) $BaCrO_4$ (d) Mixture of (a), (b),

```
(c)
```

solution

PET 1996]

- **56.** The solubility product of a sparingly soluble salt *AB* at room temperature is 1.21×10^{-6} . Its molar solubility is
 - [CPMT 1987; MP PET 2001]
 - (a) 1.21×10^{-6} (b) 1.21×10^{-3} (c) 1.1×10^{-4} (d) 1.1×10^{-3}
- **57.** The precipitation occurs if ionic concentration is [AFMC 1995; J & K 2005]
 - (a) Less than solubility product
 - (b) More than solubility product
 - (c) Equal to solubility product
 - (d) None of these
- **58.** If *S* and K_{sp} are respectively solubility and solubility product of a sparingly soluble binary electrolyte, then

(a)
$$S = K_{sp}$$
 (b) $S = K_{sp}^2$

(c)
$$S = \sqrt{K_{sp}}$$
 (d) $S = \frac{1}{2} K_{sp}$

59. Any precipitate is formed when

- [AIIMS 1982; DPMT 1985; KCET 1999; MP PMT 2004]
- (a) Solution becomes saturated
- (b) The value of ionic product is less that than the value of solubility product
- (c) The value of ionic product is equal than the value of solubility product
- (d) The value of ionic product is greater than the value of solubility product
- **60.** The solubility product of AgCl is 4.0×10^{-10} at 298 K. The solubility of AgCl in $0.04 m CaCl_2$ will be

[KCET 1996]

(a)	$2.0 \times 10^{-5} m$	(b)	$1.0 \times 10^{-4} m$
(c)	$5.0 \times 10^{-9} m$	(d)	$2.2 \times 10^{-4} m$

- 61. Hydrolysis of sodium acetate will give [MNR 1978]
 (a) Acidic solution
 (b) Basic solution
 (c) Neutral solution
 (d) Normal solution
- **62.** If the solubility product of $BaSO_4$ is 1.5×10^{-9} in
 - water, its solubility in moles per litre, is

				Ιο	nic Equilibrium 363
	[BHU 199	95; MP PET 1995; UPSEAT 204]	71.	The solubility	of $PbCl_2$ at $25^{\circ}C$ is
	(a) 1.5×10^{-9}	(b) 3.9×10^{-5}		6.3×10^{-3} mole/litre.	Its solubility product at tha
	(c) 7.5×10^{-5}	(d) 1.5×10^{-5}		temperature is	
3.	On passing H_2S ga	s through a highly acidic			[NCERT 1979; CPMT 1985
	solution containing	Cd^{2+} ions, CdS is not		(a) $(6.3 \times 10^{-3}) \times (6.3 \times 10^{-3})$	(10 ⁻³)
	precipitated because			(b) $(6.3 \times 10^{-3}) \times (12.6)$	$\times 10^{-3}$)
	(a) Of common ion eff				
	(b) The solubility of ((c) $(6.3 \times 10^{-3}) \times (12.6)$	
		orm complex with H_2S		(d) $(12.6 \times 10^{-3}) \times (12.6)$	6×10^{-3})
	(d) The solubility pro		72.	Which of the follow	ing cannot be hydrolysed
4.		ing will occur if a $0.1 M$			[MP PMT 1996
		acid is diluted to $0.01 M$ at		(a) A salt of weak a	-
	constant temperature	[UPSEAT 2001, 02]		(b) A salt of strong	
	(a) $[H^+]$ will decrease			(c) A salt of weak a	
	(b) <i>pH</i> will decrease			-	acid and strong base
		tion will increase	73.		Then a substance <i>Y</i> is dissolved
	(c) Percentage ionizat(d) K_a will increase	tion will increase			comes 13. The substance <i>Y</i> is a
				salt of	
5۰	•	m hydroxide is $\sqrt{3}$, then its		Mfacerman and	[MP PMT 1997 strong base
	solubility product will	(b) 3	L	(b) Weak acid and v	
	(a) 27			(c) Strong acid and	
~	(c) 9	(d) $12\sqrt{3}$		(d) Weak acid and s	
6.		ed to NH_4OH solution, the	74.	Which is a basic sal	-
	It is due to	nium hydroxide is reduced.	/ 1	(a) <i>PbS</i>	(b) <i>PbCO</i> ₃
	10 10 440 00	[MP PMT 1993]		(c) $PbSO_4$	(d) $2PbCO_3.Pb(OH)_2$
	(a) Common ion effec	t (b) Hydrolysis			5 2
	(c) Oxidation	(d) Reduction	75.		tion of Ag_2SO_4 is $2.5 \times 10^{-2} M_{\odot}$
7.	At 298 K, the solubility	ity of $PbCl_2$ is $2 \times 10^{-2} mol/lit$,		Its solubility produc	$ct (K_{sp}) is [NCERT 1980]$
	then $k_{sp} =$	[RPMT 2002]		(a) 62.5×10^{-6}	(b) 6.25×10^{-4}
	(a) 1×10^{-7}	(b) 3.2×10^{-7}		(c) 15.625×10^{-6}	(d) 3.125×10^{-6}
	(c) 1×10^{-5}	(d) 3.2×10^{-5}	76.	K _m for sodium ch	loride is $36 \text{ mol}^2 / \text{litre}^2$. The
8.	The solubility prod	uct of silver sulphide is	,	solubility of sodium	
		ity at the experimental		-	
	temperature is			(a) $\frac{1}{36}$	(b) $\frac{1}{6}$
	(a) 2×10^{-4} moles per l			(c) 6	(d) 3600
	(b) 6×10^{-6} moles per l		77.	Sodium chloride is	purified by passing hydrogen
	(c) 1.2×10^{-5} moles per			chloride gas in ar	n impure solution of sodium
_	(d) 8×10^{-4} moles per l			chloride. It is based	
9.	The solubility o	5			[MP PMT 1996
		ts solubility product will be [M	Р РМТ		(b) Common ion effect
	(a) 3.05×10^{-4}	(b) 10	-0	(c) Association of s	
	(c) 6.1×10^{-4}	(d) 9.3×10^{-8}	78.		n of lead iodide in its saturated 2×10^{-3} malos non litro the
D.	=	a solution $Ba(NO_3)_2$ will be		its solubility produc	2×10^{-3} moles per litre, then t is [CPMT 1984]
	represents by the con-			(a) 4×10^{-6}	(b) 8×10^{-12}
		UPSEAT 2001, 02; CPMT 2002]		(a) 4×10^{-9}	(d) 32×10^{-9}
	(a) [<i>Ba</i> ⁺⁺]	(b) [<i>F</i> ⁻]	=0		
	(c) $\frac{1}{2}[F^{-}]$	(d) $2[NO_3^-]$	7 9 .		of $CaF_2 (K_{sp} = 1.7 \times 10^{-10})$ is
	2	(m) =[obtained when equa mixed	al volumes of the following are

Get More Learning Materials Here : 📕

mixed

	504 Ionic Equilibrium		
	[IIT 1992; UPSEAT 20 (a) $10^{-4} M Ca^{2+} + 10^{-4} M F^{-}$	00]	(a) Acidic(b) Alkaline(c) Neutral(d) None of these
	(b) $10^{-2}MCa^{2+} + 10^{-3}MF^{-}$	88.	In which of the following salt hydrolysis takes
	(c) Both $M Ca + 10 M F$		place
	(d) None of these		(a) <i>KCl</i> (b) <i>NaNO</i> 3
30 .	In the reaction: $H_2S \rightleftharpoons 2H^+ + S^{}$, when NH_4	ЭH	(c) CH_3COOK (d) K_2SO_4
	is added, then [KCET (Med.) 1999; AFMC 20		At 90°C pure water has $[H_3O^+] = 10^{-6} M$, the value
	(a) S is precipitate	c gi	of K_w at this temperature will be
	(b) No action takes places		[IIT 1981; MNR 1990; CBSE PMT 1993; UPSEAT 1999
	(c) Concentration of $S^{}$ decreases		(a) 10^{-6} (b) 10^{-12}
	(d) Concentration of $S^{}$ increases	2	(c) 10^{-14} (d) 10^{-8}
1 .	What is the minimum concentration of Se	-	Solubility of MX_2 type electrolyte i
	required to precipitate BaSO ₄ in a solut		0.5×10^{-4} mole/litre. The value of K_{sp} of th
	containing $1.0 \times 10^{-4} mol Ba^{2+}$? (K_{sp} for $BaSO_4$	is	electrolyte is [CBSE PMT 2002
	$4 imes 10^{-10}$)		(a) 5×10^{-13} (b) 25×10^{-10}
	[MP PMT 20		(c) 1.25×10^{-13} (d) 5×10^{12} According to the reaction $PbCl_2 = Pb^2 + 2Cl^-$, the
	(a) $4 \times 10^{-10} M$ (b) $2 \times 10^{-7} M$	91.	solubility coefficient of $PbCl_2$ is [MP PET/PMT 1988
-	(c) $4 \times 10^{-6} M$ (d) $2 \times 10^{-3} M$	-12	
2.	Solubility product for salt AB_2 is 4×10		
	Calculate solubility [RPET 20 (a) 1×10^{-3} gm mol / litre		(c) $[Pb^{2+}]^2[Cl^-]$ (d) None of these
	-	92.	K_{sp} value of $Al(OH)_3$ and $Zn(OH)_2$ ar
	(b) $1 \times 10^{-5} gm mol / litre$		8.5×10^{-23} and 1.8×10^{-14} respectively. If NH_4OH i
	(c) $1 \times 10^{-4} gm mol / litre$		added in a solution of Al^{3+} and Zn^{2+} , which with
	(d) $1 \times 10^{-2} gm mol / litre$		precipitate earlier [MP PMT 1989; CPMT 1989
3.	Solubility product of a salt AB is 1×10^{-8} in	n a	(a) $Al(OH)_3$ (b) $Zn(OH)_2$
	solution in which concentration of A is 10^{-3}		(c) Both together (d) None
	The salt will precipitate when the concentrat of <i>B</i> becomes more than	¹⁰ⁿ 93.	Why pure NaCl is precipitated when HCl gas i
	[MP PET 1990; KCET 20	03]	passed in a saturated solution of <i>NaCl</i> [NCERT 1977; MP PMT 1987; CPMT 1974, 78, 81
	(a) $10^{-4}M$ (b) $10^{-7}M$		(a) Impurities dissolves in <i>HCl</i>
	(c) $10^{-6}M$ (d) $10^{-5}M$		(b) The value of $[Na^+]$ and $[Cl^-]$ becomes smalle
4 .	At equilibrium, if to a saturated solution		than K_{sp} of $NaCl$
	NaCl, HCl is passed, NaCl gets precipita		(c) The value of $[Na^+]$ and $[Cl^-]$ becomes greate
	because [RPMT 19 (a) <i>HCl</i> is a strong acid	99]	than K_{sp} of $NaCl$
	-		(d) <i>HCl</i> dissolves in the water
	(b) Solubility of <i>NaCl</i> decreases(c) Ionic product of <i>NaCl</i> becomes greater the	nan 94 .	Pure NaCl is prepared by saturating a col-
	(b) Solubility of <i>NaCl</i> decreases	nan 94.	Pure <i>NaCl</i> is prepared by saturating a cole saturated solution of common salt in water with
	 (b) Solubility of <i>NaCl</i> decreases (c) Ionic product of <i>NaCl</i> becomes greater the its <i>K</i>_{sp} (d) <i>HCl</i> is a weak acid 		Pure <i>NaCl</i> is prepared by saturating a coll saturated solution of common salt in water with <i>HCl</i> gas. The principle used is
5.	 (b) Solubility of <i>NaCl</i> decreases (c) Ionic product of <i>NaCl</i> becomes greater the its <i>K</i>_{sp} (d) <i>HCl</i> is a weak acid The solubility product of <i>BaSO</i>₄ is 1.3×10⁻⁹. 	Гhe	 Pure NaCl is prepared by saturating a collisaturated solution of common salt in water with HCl gas. The principle used is (a) Le Chatelier principle (b) Displacement law (c) Common ion effect (d) Fractional
5.	 (b) Solubility of <i>NaCl</i> decreases (c) Ionic product of <i>NaCl</i> becomes greater the its K_{sp} (d) <i>HCl</i> is a weak acid The solubility product of <i>BaSO</i>₄ is 1.3×10⁻⁹. The solubility of this salt in pure water will be[MP F 	The PET 200 gjsti	 Pure NaCl is prepared by saturating a col saturated solution of common salt in water wit HCl gas. The principle used is (a) Le Chatelier principle (b) Displacement law (c) Common ion effect (d) Fractional llation
5.	 (b) Solubility of <i>NaCl</i> decreases (c) Ionic product of <i>NaCl</i> becomes greater the its <i>K</i>_{sp} (d) <i>HCl</i> is a weak acid The solubility product of <i>BaSO</i>₄ is 1.3×10⁻⁹. 	The PET 200 gjsti	 Pure NaCl is prepared by saturating a coll saturated solution of common salt in water with HCl gas. The principle used is (a) Le Chatelier principle (b) Displacement law (c) Common ion effect (d) Fractional llation What is the solubility of calcium fluoride in
5.	 (b) Solubility of <i>NaCl</i> decreases (c) Ionic product of <i>NaCl</i> becomes greater the its K_{sp} (d) <i>HCl</i> is a weak acid The solubility product of <i>BaSO</i>₄ is 1.3×10⁻⁹. The solubility of this salt in pure water will be[MP F 	The PET 200 gjsti	 Pure NaCl is prepared by saturating a col saturated solution of common salt in water wit HCl gas. The principle used is (a) Le Chatelier principle (b) Displacement law (c) Common ion effect (d) Fractional llation What is the solubility of calcium fluoride in
	 (b) Solubility of <i>NaCl</i> decreases (c) Ionic product of <i>NaCl</i> becomes greater that its <i>K_{sp}</i> (d) <i>HCl</i> is a weak acid The solubility product of <i>BaSO</i>₄ is 1.3×10⁻⁹. The solubility of this salt in pure water will be[MP F (a) 1.69×10⁻⁹ mol litre⁻¹ (b) 1.69×10⁻¹⁸ mol litre⁻¹ 	The PET 200 gjsti 95.	Pure <i>NaCl</i> is prepared by saturating a coll saturated solution of common salt in water with <i>HCl</i> gas. The principle used is (a) Le Chatelier principle (b) Displacement law (c) Common ion effect (d) Fractional llation What is the solubility of calcium fluoride in saturated solution, if its solubility product i 3.2×10^{-11} [CPMT 1997
	 (b) Solubility of NaCl decreases (c) Ionic product of NaCl becomes greater that its K_{sp} (d) HCl is a weak acid The solubility product of BaSO₄ is 1.3×10⁻⁹. The solubility of this salt in pure water will be[MP F (a) 1.69×10⁻⁹ mol litre⁻¹ (b) 1.69×10⁻¹⁸ mol litre⁻¹ (c) 3.6×10⁻¹⁸ mol litre⁻¹ (d) 3.6×10⁻⁵ mol litre⁻¹ The solubility product of AgCl under stand conditions of temperature is given by [Kerala (Mathematical Science Science	The PET 200\$jisti 95. ard	Pure <i>NaCl</i> is prepared by saturating a coll saturated solution of common salt in water with <i>HCl</i> gas. The principle used is (a) Le Chatelier principle (b) Displacement law (c) Common ion effect (d) Fractional llation What is the solubility of calcium fluoride in saturated solution, if its solubility product i 3.2×10^{-11} [CPMT 1997 (a) 2.0×10^{-4} mole / litre (b) 12.0×10^{-3} mole / litre
35. 36.	 (b) Solubility of NaCl decreases (c) Ionic product of NaCl becomes greater that its K_{sp} (d) HCl is a weak acid The solubility product of BaSO₄ is 1.3×10⁻⁹. The solubility of this salt in pure water will be[MP H (a) 1.69×10⁻⁹ mol litre⁻¹ (b) 1.69×10⁻¹⁸ mol litre⁻¹ (c) 3.6×10⁻¹⁸ mol litre⁻¹ (d) 3.6×10⁻⁵ mol litre⁻¹ The solubility product of AgCl under stand conditions of temperature is given by [Kerala (M (a) 1.6×10⁻⁵ (b) 1.5×10⁻⁸ 	The PET 200\$jisti 95. ard	Pure <i>NaCl</i> is prepared by saturating a colusaturated solution of common salt in water with <i>HCl</i> gas. The principle used is (a) Le Chatelier principle (b) Displacement law (c) Common ion effect (d) Fractional llation What is the solubility of calcium fluoride in saturated solution, if its solubility product i 3.2×10^{-11} [CPMT 1997
	 (b) Solubility of NaCl decreases (c) Ionic product of NaCl becomes greater that its K_{sp} (d) HCl is a weak acid The solubility product of BaSO₄ is 1.3×10⁻⁹. The solubility of this salt in pure water will be[MP F (a) 1.69×10⁻⁹ mol litre⁻¹ (b) 1.69×10⁻¹⁸ mol litre⁻¹ (c) 3.6×10⁻¹⁸ mol litre⁻¹ (d) 3.6×10⁻⁵ mol litre⁻¹ The solubility product of AgCl under stand conditions of temperature is given by [Kerala (Mathematical Science Science	The PET 200\$jisti 95. ard	Pure <i>NaCl</i> is prepared by saturating a colusaturated solution of common salt in water with <i>HCl</i> gas. The principle used is (a) Le Chatelier principle (b) Displacement law (c) Common ion effect (d) Fractional llation What is the solubility of calcium fluoride in saturated solution, if its solubility product i 3.2×10^{-11} [CPMT 1997 (a) 2.0×10^{-4} mole / litre (b) 12.0×10^{-3} mole / litre

Get More Learning Materials Here : 💻

				Ioni	ic Equilibrium 365	
	$H_2S \rightleftharpoons H^+ + HS^-$			(c) <i>PbS</i>	(d) <i>ZnS</i>	
		to an aqueous solution of e in temperature[NCERT 1989]		The concentration of when NH_3 solution is		creased, MT 1997]
	(a) The equilibrium con	stant will change		(a) <i>OH</i> ⁻	(b) NH_4^+	
	(b) The concentration o			(c) $H_3 O^+$	(d) O_2^-	
lecre		of undissociated H_2S will	107.	The compound insolu	ble in acetic acid is [1	IT 1986]
	(d) The concentration o	f HS ⁻ will decrease		(a) Calcium oxide	2	
97.	Solubility of a salt M	M_2X_3 is $y \mod dm^{-3}$. The		(b) Calcium carbonate(c) Calcium oxalate	e	
	solubility product of the	e salt will be		(d) Calcium hydroxid	e	
		, 97; AFMC 1991; RPMT 1999;	108	A saturated solution		2 <i>M</i> · The
	(a) $6y^4$	PMT 2003; Orissa JEE 2005] (b) 64 y ⁴	100.	value of its solubility		ET 2004]
				(a) 62.5×10^{-6}	(b) 6.25×10^{-4}	2004]
.0	(c) $36y^5$	(d) $108 y^5$				
98.	Which one of the follow	CBSE PMT 1994; RPMT 2000]		(c) 15.625×10^{-6}		0.00
	(a) $CuS(K_{sp} = 8 \times 10^{-37})$		109.	Solubility product of		98 K. Its
		(d) $Ag_2 S(K_{sp} = 6 \times 10^{-51})$		solubility in mole <i>litre</i>	would be	
	*	*		(a) $1 \times 10^{-6} mol / litre$		
9.		t of $PbCl_2$ at $20^{\circ}C$ is		(b) $1 \times 10^{-3} mol / litre$		
	1.5×10^{-4} . Calculate the	solubility[Bihar CEE 1995; BHU	2002]	(c) $1 \times 10^{-12} mol / litre$		
	(a) 3.75×10^{-4}	(b) 3.34×10^{-2}		(d) None of these		
~~	(c) 3.34×10^2	(d) None of these	110.	A litre of solution is	saturated with AgCl.	To this
00.	acid	ving compounds is a Lewis		solution if 1.0×10^{-4} m	nole of solid NaCl is	s added,
		[EAMCET 1997]		what will be the [Ag^+], assuming no	volume
	(a) PCl_3	(b) <i>BCl</i> ₃		change		AT 2004]
	(c) <i>NCl</i> ₃	(d) $CHCl_3$		(a) More	(b) Less	
01.		wing salt is most acidic in		(c) Equal	(d) Zero	
	water	0	111.	The concentration of solution containing b		
		[IIT 1995]		of this solution is ad		
	(a) $NiCl_2$	(b) $BeCl_2$		solution of AgI in wa	ter? What will happe	n [MP PMT 20
	(c) $FeCl_3$	(d) $AlCl_3$		(a) AgCl will be preci	pitated	
.02.	•	aqueous solution will have		(b) AgI will be precip		
	a pH less than 7.0	[MP PMT 1991, 92]		(c) Both <i>AgCl</i> and <i>Agl</i>	will be precipitated	
	(a) KNO_3	(b) <i>NaOH</i>		(d) There will be no p	-	
	(c) $FeCl_3$	(d) <i>NaCN</i>	112.	The solubility produc		
03.	Hydrolysis constant for weak base would be	r a salt of weak acid and [RPMT 1999]		AX_2 is 3.2×10^{-11} . Its is	solubility (in moles	/ litres)
	(a) $K_{\rm c} = \frac{K_{\rm w}}{K_{\rm c}}$	(b) $K_{\rm c} = \frac{K_{\rm w}}{K_{\rm c}}$			[CBSE PN	IT 2004]
	(a) $K_h = \frac{K_w}{K_a}$	(b) $K_h = \frac{K_w}{K_b}$		(a) 2×10^{-4}	(b) 4×10^{-4}	
	(c) $K_{\rm c} = \frac{K_{\rm w}}{K_{\rm c}}$	(d) None of these		(c) 5.6×10^{-6}	(d) 3.1×10^{-4}	
	(c) $K_h = \frac{K_w}{K_a K_b}$		113.	0.5 <i>M</i> ammonium be percent, hence its hyd		
.04.	which sait will give bas	ic solution on hydrolysis		(a) 2.5×10^{-5}	(b) 1.5×10^{-4}	
	(a) <i>KCN</i>	[RPMT 1997] (b) <i>KCl</i>		(c) 3.125×10^{-6}	(d) 6.25×10^{-4}	
					(u) 0.25 × 10	-

114. The solubility of Sb_2S_3 in water is 1.0×10^{-5} mol / litre at 298 K. What will be its solubility product [CPMT 20 (a) 108×10^{-25} (b) 1.0×10^{-25}

Ionic Equilibrium 365

105. Which of the following sulphides has the lowest

(d) CH_3COONH_4

(b) *MnS*

[KCET 1996]

(c) NH_4Cl

(a) *FeS*

solubility product

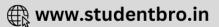
CLICK HERE

>>>

(c) 144×10^{-25}

115. The ionic product of water at 25°C is 10⁻¹⁴. The ionic product at 90°C will be [CBSE PMT 1996]
(a) 1×10⁻²⁰
(b) 1×10⁻¹²
(c) 1×10⁻¹⁴
(d) 1×10⁻¹⁶

(d) 126×10^{-24}


116. In hydrolysis of a salt of weak acid and strong base, $A^- + H_2O \rightleftharpoons HA + OH^-$, the hydrolysis constant (K_h) is equal to....

(a)
$$\frac{K_w}{K_a}$$
 (b) $\frac{K_w}{K_b}$
(c) $\sqrt{\frac{K_a}{C}}$ (d) $\frac{K_w}{K_a \times K_b}$

Hydrogen ion concentration- *p*H scale and Buffer solution

1.		not appreciably change by a id or a base because blood [CBSE PMT 1995]	1
	(a) Contains serum pro	otein which acts as buffer	
	(b) Contains iron as a	part of the molecule	1
	(c) Can be easily coage	-	
	(d) It is body fluid		
2.	The pH of a 0.001 MN	aOH will be	
		[MP PMT 1995; UPSEAT 2001]	
	(a) 3	(b) 2	
	(C) 11	(d) 12	1
3.	pH value of a soluti	on, whose hydronium ion	
	concentration is 6.2×1	$0^{-9} mol/l$, is [AFMC 1999; AIIMS	20
	(a) 6.21	(b) 7.21	
	(c) 7.75	(d) 8.21	1
4.	0.08 mole of HCl and will be the H^+ concentre	$K_b = 5 \times 10^{-4}$) is mixed with diluted to one litre. What ration in the solution? [IIT 200	5]
	(a) $8 \times 10^{-2} M$	(b) $8 \times 10^{-11} M$	
	(c) $1.6 \times 10^{-11} M$	(d) $8 \times 10^{-5} M$	
5۰		m of pH and pOH in an	1
	aqueous solution ?	[MP PET/PMT 1998]	-
	(a) 7	(b) pk_w	
	(c) Zero	(d) 1	
6.	Hydrogen ion concentro of $pH = 5.4$ will be	ration in <i>mol/L</i> in a solution [AIEEE 2005]	
	(a) 3.98×10^8	(b) 3.88×10^{6}	
7.	(c) 3.68×10^{-6} When solid potassium then	(d) 3.98×10^{-6} a cyanide is added in water	1
	tiitii	[CPMT 2002; BHU 2002]	
	(a) <i>pH</i> will increase	[01111 2002, 5110 2002]	
	(b) <i>pH</i> will decrease		1
	(-) p ucci bubb		

- (c) *pH* will remain the same (d) Electrical conductivity will not change *pH* of a $10^{-3}M$ solution of hydrochloric acid will 8. be [MP PET 2000] (b) 2.0 (a) 1.3 (d) 4.5 (c) 3.0 The pH of water at $25^{\circ}C$ is nearly [Orissa JEE 2002] [CPMT 1986, 89, 90, 93; CBSE PMT 1989; MADT Bihar 1995] (a) 2 (b) 7 (c) 10 (d) 12 10. pH of a solution is 5. Its hydroxyl ion concentration is [JIPMER 1999] (a) 5 (b) 10 (c) 10^{-5} (d) 10^{-9} 11. The *pH* of a solution in which the $[H^+] = 0.01$, is [MADT Bihar 1980] (a) 2 (b) 1 (c) 4 (d) 3 12. At 25°C, the dissociation constant of a base *BOH* is 1.0×10^{-12} . The concentration of Hydroxyl ions in 0.01 *M* aqueous solution of the base would be [CBSE PMT 2 (a) $2.0 \times 10^{-6} mol L^{-1}$ (b) $1.0 \times 10^{-5} mol L^{-1}$ (c) $1.0 \times 10^{-6} mol L^{-1}$ (d) $1.0 \times 10^{-7} mol L^{-1}$ Aqueous solution of HCl has the pH = 4. Its 13. molarity would be [RPMT 1999] (a) 4 M (b) 0.4 M [S 2000] (c) 0.0001 M (d) 10 M Which is a buffer solution 14. [CPMT 1985, 88; AIIMS 1980; MP PMT 1994; AFMC 2004] (a) $CH_3COOH + CH_3COONa$ (b) $CH_3COOH + CH_3COONH_4$ (c) $CH_3COOH + NH_4Cl$ (d) NaOH + NaClThe addition of solid sodium carbonate to pure 15. water causes [NCERT 1973] (a) An increase in hydronium ion concentration (b) An increase in alkalinity (c) No change in acidity (d) A decrease in hydroxide ion concentration 16. The aqueous solution of which of the following salt has the lowest pH [CBSE PMT 2002] (a) NaClO (b) NaClO₂ (d) $NaClO_{A}$ (c) $NaClO_3$
 - **17.** The *pH* of a 10^{-10} *M NaOH* solution is nearest to

					Ionic Equilibrium 367
		[UP	SEAT 2001, 02]		(c) <i>pH</i> of <i>A</i> and <i>B</i> increase
	(a) 10	(b) 7			(d) pH of B and A decrease
	(c) 4	(d) -10		28.	The compound whose 0.1 <i>M</i> solution is basic is
	Which will have maxim	um <i>pH</i>	[NCERT 1979]		[IIT 1986; MP PMT 1991]
	(a) Distilled water				(a) Ammonium acetate
	(b) 1 <i>M</i> NH ₃				(b) Calcium carbonate
	(c) 1 M NaOH				(c) Ammonium sulphate
	(d) Water saturated by	chlorine			(d) Sodium acetate
•	<i>pH</i> of a solution is 9.5.		is[MH CFT 2000]	29.	The following reaction is known to occur in the body $CO_2 + H_2O \approx H_2CO_3 \approx H^+ + HCO_3^-$. If
•	(a) Neutral	(b) Acidic			
	(c) Basic	(d) Amphot	eric		CO_2 escapes from the system[NCERT 1973; RPMT 1997
	The <i>pH</i> of a $10^{-9}M$ solution	-			(a) <i>pH</i> will decrease
•					(b) Hydrogen ion concentration will decrease
	(a) 8	(b) - 8	SEAT 2000, 02]		(c) H_2CO_3 concentration will be unaltered
	(a) 8 (c) Between 7 and 8		n 6 and 7		(d) The forward reaction will be promoted
	pH + pOH equal to	(d) Betwee		30.	
		(h) T- 1	[NCERT 1975]		sodium acetate and acetic acid, the ratio of the concentration of salt and acid should be $(K_a = 10^{-5})$ [M
	(a) Zero	(b) Fourtee			
	(c) A negative number	(d) Infinity			(a) 1 : 10 (b) 10 : 1
•	Which of the following the largest concentration	0.1111 SOLUTIO	um ions incert 1	071 77	(c) 100 : 1 (d) 1 : 100
	(a) $NaHCO_3$	(b) NH_4Cl	am ionoliverki i	⁷ 31.	^{3]} Which is incorrect for buffer solution [CPMT 1985]
	(c) <i>HCl</i>	(d) NH_3			(a) It contains weak acid and its conjugate base
		5	[]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]		(b) It contains weak base and its conjugate acid
•	Which one has pH 12		[Roorkee 1995]		(c) In this there is very less change is pH value
	(a) 0.01 <i>M KOH</i>	(b) 1 <i>N KO</i>			when very less amount of acid and base is mixed
	(c) 1 N NaOH ml	(d) $1 N Ca(0)$	$(DH)_2 ml$		(d) None of the above
•	What is the correct rela	-	-	32.	pH values of HCl and $NaOH$ solutions each of
	of isomolar solutions		•		strongth ^N will be recreatively. [ND DWT togel
	sodium sulphide (pH_2) ,		nide (pH_3) and		strength $\frac{N}{100}$ will be respectively [MP PMT 1999]
	sodium telluride (pH_4) ?	[C	BSE PMT 2005]		(a) 2 and 2 (b) 2 and 12
	(a) $pH_1 > pH_2 = pH_3 > pH_3$	H_4			(c) 12 and 2 (d) 2 and 10
	(b) $pH_1 < pH_2 < pH_3 < pH_3$	H_4		33.	
	(c) $pH_1 < pH_2 < pH_3 = pH_3$	H_A			collected rain water will have a <i>pH</i> value[AIEEE 2003
	(d) $pH_1 > pH_2 > pH_3 > pH_3$				(a) Slightly lower than that of rain water without thunderstorm
•	Given pH of a solution pH another solution B has	A is 3 and it			(b) Slightly higher than that when the thunderstorm is not there
	then resultant <i>pH</i> of the				(c) Uninfluenced by occurrence of thunderstorm
	(a) 3.2	(b) 1.9			(d) Which depends on the amount of dust in air
	(c) 3.4	(d) 3.5		34.	
•	On adding solid potassi				strong acidic nature [MP PET 2002]
			[MP PMT 1989]		(a) $HCOOH + HCOO^-$
	(a) <i>pH</i> will increase				(b) $CH_3COOH + CH_3COO^-$
	(b) <i>pH</i> will decrease				(c) $H_2C_2O_4 + C_2O_4^{2-}$
	(c) <i>pH</i> will not change(d) Electrical conductar	nce will not a	hange		
	A is an aqueous acid; E		•		(d) $H_3BO_3 + BO_3^{3-}$
•	are diluted separately, t	-	[KCET 2002]	35.	
	(a) <i>pH</i> of <i>A</i> increases a				The pH of 0.1 molar solution of the acid will be
	(b) <i>pH</i> of <i>A</i> increases a	-			[KCET (Engg./Med.) 1999]
	-	-	-		(a) Five (b) Four
	<i>pH</i> in each case is 7	7			(c) Three (d) One

Get More Learning Materials Here : 💻

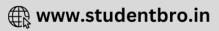
Topic Equilibrium 265

The <i>pH</i> value of 1.0×1	$0^{-8}MHCl$ solution is less	46.	The hydrogen ion con	centration of $0.1N$ solution	
than 8 because			of CH_3COOH , which i	s 30% dissociated, is [JIPMER	R 2002]
(a) <i>HCl</i> is complete	tely ionised at this		(a) 0.03	(b) 3.0	
			(c) 0.3	(d) 30.0	
		47.	What is the pH of 0.11	M NH ₃ [RPET 2000]	
			(a) 11.27	(b) 11.13	
			(c) 12.0	(d) 9.13	
		48.			
			-		
What is the pH for a	neutral solutions at the				
normal temperature of t	he human body [JIPMER 2000]	40			
(a) 7.2	(b) 14.0	49.	-		
(c) 6.8	(d) 6.0				
		50.	-	7.4. Then <i>H</i> ⁺ concentration	
	-		WIII De	[RPMT 2002]	
	-		(a) 4×10^{-8}		
	-				
	-	-1			
· ·		51.			
				[Pb. PMT 2002]	
			(a) 0.1		
			(c) 0.05	(d) 2.0	
		52.	Highest <i>pH</i> 14 is giver	1 by [DCE 1999]	
			(a) $0.1 M H_2 SO_4$	(b) 0.1 <i>M NaOH</i>	
			(c) 1N NaOH	(d) 1 <i>N HCl</i>	
-		1=2	What will be the nH o	f a 10^{-8} M HCl solution	
		1931	-		
-		E /			
	$(K_a = 1.8 \times 10^{\circ}), 15$	54.		• u ,	
approximately	[MP PMT 2002]				
(a) 4			-		
		55			
		55.		the water will have ph less	
(a) 2	(b) 1.3		chun y	[MH CET 2001]	
(c) 0	(d) 7		(a) <i>BaO</i>		
The <i>pH</i> of the solution	on containing 10 <i>ml</i> of a			(d) $P_2 O_5$	
0.1 N NaOH and 10 ml of	$0.05 N H_2 SO_4$ would be	56.	-		
	[Pb. PMT 2002, 04]	50.		-	
(a) 1	(b) O		(a) < 7	(b) > 7	
(c) 7	(d) > 7		(a) < 7 (c) 7	(d) 14.2	
				(4) 14.4	
The <i>pH</i> of $10^{-7} M NaOH$	is [MP PMT 2001]	57	nH of completely disc	ociated 0.005 MH.SO is	
The <i>pH</i> of $10^{-7} M NaOH$		57.	<i>pH</i> of completely diss	bociated $0.005 MH_2SO_4$ is	
	is [MP PMT 2001] (b) Between 7 and 8 (d) Greater than 10	57.	<i>pH</i> of completely disso (a) 3	(b) 4	
	than 8 because (a) <i>HCl</i> is completed entration (b) The ionization of wards (c) The ionization of <i>WC</i> (d) The <i>pH</i> cannot be concentration of <i>HC</i> (d) The <i>pH</i> cannot be concentration of <i>HC</i> (d) The <i>pH</i> cannot be concentration of <i>HC</i> (d) The <i>pH</i> cannot be concentration of <i>HC</i> (a) 7.2 (c) 6.8 1 <i>M NaCl</i> and 1 <i>M HCl</i> solution. The solution is (a) Not a buffer solution (b) Not a buffer solution (c) A buffer solution with (d) A buffer solution with A solution has $pH = 5$, then it will become (a) Neutral (c) Unaffected 0.02 <i>M</i> monobasic acid of the solution is (a) 0.3979 (c) 1.699 Components of buffer set 0.2 <i>M NaCN</i> . What is the (a) 9.61 (c) 2.0 <i>pH</i> of a solution of 10 <i>m</i> 50 <i>ml</i> 2 <i>N</i> acetic and approximately (a) 4 (c) 6 By adding 20 <i>ml</i> 0.1 <i>N He</i> the <i>pH</i> of the obtained s (a) 2 (c) 0 The <i>pH</i> of the solution 0.1 <i>N NaOH</i> and 10 <i>ml</i> of	(a) <i>HCl</i> is completely ionised at this entration (b) The ionization of water is negligible (c) The ionization of water cannot be assumed to be negligible in comparison with this low concentration of <i>HCl</i> (d) The <i>pH</i> cannot be calculated at such a low concentration of <i>HCl</i> What is the <i>pH</i> for a neutral solutions at the normal temperature of the human body[JIPMER 2000] (a) 7.2 (b) 14.0 (c) 6.8 (d) 6.0 1 <i>M NaCl</i> and 1 <i>M HCl</i> are present in an aqueous solution. The solution is [AIEEE 2002] (a) Not a buffer solution with <i>pH</i> < 7 (b) Not a buffer solution with <i>pH</i> > 7 (c) A buffer solution with <i>pH</i> > 7 (d) A buffer solution with <i>pH</i> > 7 A solution has <i>pH</i> = 5, it is diluted 100 times, then it will become [NCERT 1978; AFMC 2005] (a) Neutral (b) Basic (c) Unaffected (d) More acidic 0.02 <i>M</i> monobasic acid dissociates 2% hence, <i>pH</i> of the solution is [MH CET 2000] (a) 0.3979 (b) 1.3979 (c) 1.699 (d) 3.3979 Components of buffer solution are 0.1 <i>M HCN</i> and 0.2 <i>M NaCN</i> . What is the <i>pH</i> of the solution[RPET 2000] (a) 9.61 (b) 6.15 (c) 2.0 (d) 4.2 <i>pH</i> of a solution of 10 <i>ml</i> . 1 <i>N</i> sodium acetate and 50 <i>ml</i> 2 <i>N</i> acetic acid ($K_a = 1.8 \times 10^{-5}$), is approximately [MP PMT 2003] (a) 4 (b) 5 (c) 6 (d) 7 By adding 20 <i>ml</i> 0.1 <i>N HCl</i> to 20 <i>ml</i> 0.001 <i>N KOH</i> , the <i>pH</i> of the obtained solution will be[KCET 2000] (a) 2 (b) 1.3 (c) 0 (d) 7 The <i>pH</i> of the solution containing 10 <i>ml</i> of a 0.1 <i>N NaOH</i> and 10 <i>ml</i> of 0.05 <i>N</i> H_2SO_4 would be [Pb. PMT 2002, 04]	Interpretation of which the formation of the	than 8 because of CH_3COOH , which i (a) HCI is completely ionised at this entration (b) The ionization of water cannot be assumed to be negligible in comparison with this low concentration of HCI (c) The ionization of water cannot be assumed to be negligible in comparison with this low concentration of HCI (d) The pH cannot be calculated at such a low concentration of HCI (d) The pH cannot be calculated at such a low concentration of HCI (d) The pH cannot be calculated at such a low concentration of HCI (d) The pH cannot be calculated at such a low concentration of HCI (d) The pH cannot be calculated at such a low concentration of HCI (d) The pH of a neutral solutions at the normal temperature of the human boly[JIPMER 2000] (a) 7.2 (b) 14.0 (c) 6.8 (d) 6.0 (c) 6.8 (d) 6.0 (c) 6.8 (d) 6.0 (c) 1.0 MACI and 1 $MHCI$ are present in an aqueous solution. The solution with $pH < 7$ (c) A buffer solution with $pH < 7$ (c) A buffer solution with $pH > 7$ (c) A buffer solution with $pH > 7$ (c) 4×10^{-8} (c) 4×10	than 8 because of $CH_{1}COOH$, which is 30% dissociated, is [JIFMEI (a) IIC is completely ionised at this (a) 0.03 (b) 3.0 (c) 1.0 (c) The ionization of water is negligible (c) The ionization of IIC (d) The PH cannot be calculated at such a low concentration of IIC (d) The PH cannot be calculated at such a low concentration of IIC (d) The PH cannot be calculated at such a low concentration of IIC (d) The PH for human body[JIPMER 2000] (a) 7.2 (b) 14.0 (c) 6.8 (d) 14.0 (c) 1.0 (d) 14.0 (c) 1

Get More Learning Materials Here : 💻

Regional www.studentbro.in

To obtain a buffer which should be suitable for **58.** The pK_a of a weak acid is 4.8. What should be the 68. maintaining a pH of about 4-5, we need to have ratio of [Acid]/[Salt] of a buffer if pH = 5.8 is in solution, a mixture of required (a) A strong base + its salt with a weak acid [MP PET 2003] (b) A weak base + its salt with a strong acid (a) 10 (b) 0.1 (c) A strong acid + its salt with a weak base (c) 1 (d) 2 (d) A weak acid + its salt with a strong base Which of the following salt is acidic 59. The concentration of *NaOH* solution is 10^{-8} *M*. 69. [CPMT 1979, 81; NCERT 1979, 81; MP PET 1990; JIPMER 2002] Find out the (OH^{-}) concentration [CPMT 1993] (a) Na_2SO_4 (b) NaHSO 3 (a) 10^{-8} (c) Na_2SO_3 (d) Na_2S (b) Greater than 10^{-6} (c) 10^{-6} **60.** 20ml of 0.5NHCl and 35ml of 0.1NNaOH are mixed. The resulting solution will (d) Lies between 10^{-6} and 10^{-7} [KCET 2005] 7**0**. The pH of 0.0001 N solution of KOH will be (a) Be neutral [BHU 1997; CET Pune 1998] (b) Be basic (a) 4 (b) 6 (c) Turn phenolphthalein solution pink (c) 10 (d) 12 (d) Turn methyl orange red Given that the dissociation constant for H_2O is 71. The pH of a 0.02 *M* solution of hydrochloric acid 61. $K_w = 1 \times 10^{-14}$ mole² litre⁻², what is the *pH* of a is 0.001 molar KOH solution [MP PMT 1993] [MP PET 1995; MP PET/PMT 1998] (a) 2.0 (b) 1.7 (a) 10^{-11} (d) 2.2 (b) 3 (c) 0.3 (c) 14 (d) 11 **62.** A sample of $Na_2CO_3.H_2O$ weighing 0.62 g is added 72. An acidic buffer solution can be prepared by to 100 ml of $0.1 N (NH_4)_2 SO_4$ solution. What will mixing solution of [MNR 1983] be the resulting solution [BHU 1997] (a) Ammonium acetate and acetic acid (a) Acidic (b) Neutral (b) Ammonium chloride and hydrochloric acid (c) Basic (d) None of these (c) Sulphuric acid and sodium sulphate The pH of the solution is 4. The hydrogen ion (d) Acetic acid and sulphuric acid 63. concentration of the solution in *mol/litre* is[UPSEAT 2000] (e) NaCl and NaOH Which of the following mixtures forms an acid 73. (b) 10^{-4} (a) 9.5 buffer (c) 10^4 (d) 10^{-2} [MP PMT 1993; IIT 1981; CPMT 1989; CBSE PMT 1989] **64.** $NaOH_{(aq)}, HCl_{(aq)}$ and $NaCl_{(aq)}$ concentration of each (a) NaOH + HCl(b) $CH_3COOH + CH_3COONa$ is $10^{-3}M$. Their pH will be respectively [BHU 2003] (c) $NH_4OH + NH_4Cl$ (a) 10, 6, 2 (b) 11, 3, 7 (c) 10, 2, 6 (d) 3, 4, 7 (d) $H_2CO_3 + (NH_4)_2CO_3$ **65.** The *pH* of 10^{-5} *M* aqueous solution of *NaOH* is A buffer solution has equal volumes of 74. [MP PET 1996] $0.2M NH_4 OH$ and $0.02M NH_4 Cl$. The pK_b of the (a) 5 (b) 7 base is 5. The *pH* is (d) 11 (c) 9[CBSE PMT 1989; KCET 2005] The pH of 0.05 M solution of dibasic acid is 66. (a) 10 (b) 9 [MH CET 2002] (c) 4 (d) 7 (a) +1 (b) -1 The pH of a simple sodium acetate buffer is given 75. (c) +2 (d) -2 by $pH = pK_a + \log \frac{[Salt]}{[Acid]}$ A buffer solution contains 0.1 M of acetic acid 67. and 0.1 M of sodium acetate. What will be its K_a of acetic acid = 1.8×10^{-5} pH, if pK_a of acetic acid is 4.75 If [Salt] = [Acid] = 0.1 M, the *pH* of the solution (a) 4.00 (b) 4.75 would be about [BHU 1987] (c) 5.00 (d) 5.25 (a) 7 (b) 4.7 (c) 5.3 (d) 1.4


Get More Learning Materials Here : 📕

Ionic Equilibrium 369

	U / U / U /				
76.	Amongst the follow solution is	ring solutions, the buffer	87.	Which solution conta H^+ ion	ins maximum number of
		[MP PMT 1999]		(a) 0.1 M <i>HCl</i>	(b) 0.1 M <i>NH</i> ₄ <i>Cl</i>
	(a) $NH_4Cl + NH_4OH$ so			(c) 0.1 M <i>NaHCO</i> ₃	(d) 0.1 M
	(b) $NH_4Cl + NaOH$ solution	ution		-	
	(c) $NH_4OH + HCl$ solut	tion	88.		solution contains equal K^{-} is
	(d) <i>NaOH</i> + <i>HCl</i> solution	on			and <i>HX</i> . The K_b for X^- is
7.	The pH of solution has	aving $[OH^{-}] = 10^{-7}$ is [AIIMS 1996]]	10^{-10} . The <i>pH</i> of the bu	ffer is
	(a) 7	(b) 14		[IIT 1984; RPMT 19	997; CPMT 1996; DPMT 2004]
	(c) Zero	(d) -7		(a) 4	(b) 7
3.	50 ml water is add	ed to a 50 ml solution of		(c) 10	(d) 14
	$Ba(OH)_2$ of strength (0.01 M. The <i>pH</i> value of the	89.	The defination of <i>pH</i> is	[EAMCET 1980; UPSEAT 2001
	resulting solution will			(\mathbf{r}) \mathbf{u} 1	
	(a) 8	(b) 10		(a) $pH = \log \frac{1}{[H^+]}$	(b) $pH = \log[H^{+}]$
	(c) 12	(d) 6		1	···+
•	<i>pH</i> of a solution can b	e expressed as		(c) $pH = -\log \frac{1}{[H^+]}$	(d) $pH = -\log^{[H^*]}$
		[CPMT 1999; UPSEAT 2001]	~~		does not make any change
	(a) $-\log_e(H^+)$	(b) $-\log_{10}(H^+)$	90.	6	0 <i>ml</i> dilute <i>HCl</i> [NCERT 1975
	(c) $\log_{e}(H^{+})$	(d) $\log_{10}(H^+)$		-	
			1	(a) 5 <i>ml</i> pure water	(b) 20 <i>ml</i> pure water
•	(a) Greater than 7	n carbonate has <i>pH</i> [MP PET 20) (b) Less than 7		(c) 10 <i>ml HCl</i>	(d) Same 20 <i>ml</i> dilute
	(c) Equal to 7	(d) Equal to zero	HCl		
	The <i>pH</i> of $10^{-7} N HCl$		91.		leous solution will have the
				highest <i>pH</i>	
	(a) 6.0	(b) 6.97			MP PET 1996; DPMT 1982, 83]
	(c) 8.0	(d) 10.0		(a) NaCl	(b) Na_2CO_3
•		n is 2, its normality will be		(c) NH_4Cl	(d) NaHCO ₃
		ADT Bihar 1982; MP PET 2000]	92.	At $80^{\circ}C$ distilled wate	er has $[H_3O^+]$ concentration
	(a) 2 <i>N</i>	(b) $\frac{1}{2}N$	92.		
	(c) 0.01 <i>N</i>	(d) None of these			<i>itre.</i> The value of K_w at this
•		f 100 ml having a pH value		-	CBSE PMT 1994; RPMT 2000;
		dilute HCl , then the pH of			2001; AIIMS 2002; BHU 2002]
	buffer solution			(a) 1×10^{-6}	(b) 1×10^{-9}
	(a) Converts to π	[NCERT 1976, 77]		(c) 1×10^{-12}	(d) 1×10^{-15}
	(a) Converts to 7	(b) Does not change	93.	The pH value of 0.1 h	M NaOH solution is (when
	(c) Converts to 2	(d) Changes to 10		there is a given reaction	n $[H^+][OH^-] = 10^{-15}$)[CPMT 19
•		tic acid, sodium acetate is ue[NCERT 1977; DPMT 1985; MP	DMT 10	e	
	(a) Decreases	uc[NCERT 19//, DTMT 1905, MT			(b) 12
	(b) Increases			(c) 11	(d) 2
	(c) Remains unchange	ad	94.	Which oxychloride has	maximum <i>pH</i> [CPMT 1997]
	(d) (a) and (b) both a			(a) NaClO	(b) $NaClO_2$
		6.0, then its <i>pH</i> will be		(c) $NaClO_3$	(d) $NaClO_4$
•	II poir of a solution is	[MP PMT 1987]		-	
	(a) 6	(b) 10	95.	pH of $HCl(10 M)$ is [C	PMT 1997; Pb. PET/PMT 1999]
	(c) 8	(d) 14		(a) 12	(b) -12
		= 5, more acid is added in		(c) ≈ 7	(d) 14
•		pH = 2. The increase in	96.	Which one is buffer sol	ution [CPMT 1997]
		ration is[MP PET 1989; CPMT 19	101	(a) $[PO_4^{}][[HPO_4^{}]]$	(b) $[PO_3^{3-}][[H_2PO_4^{}]]$
			10]		
	(a) 100 times	(b) 1000 times		(c) $[HPO_4^{}][[H_2PO_4^{}]]$	(d) All of these
	(c) 3 times	(d) 5 times			

Get More Learning Materials Here : 💻

- 97. When 100 ml of M/10 NaOH solution and 50 ml of M/5 HCl solution are mixed, the pH of resulting solution would be (a) 0 (b) 7 (c) Less than 7 (d) More than 7 98. How many millilitres of 6.0 M hydrochloric acid
- should be used to prepare 150 ml of a solution which is 0.30 *M* in hydrogen ion

(a) 3.0			(b) 7.5
(c) 9.3			(d) 30

99. The pH of 0.1 M acetic acid is 3, the dissociation constant of acid will be

(a)	1.0×10^{-4}	(b)	1.0×10^{-5}
(c)	1.0×10^{-3}	(d)	1.0×10^{-8}

100. The *pH* of a buffer solution containing 25 ml of $1 M CH_3 COONa$ and 25 ml of $1 M CH_3 COOH$ will be appreciably affected by 5 ml of

(a)	1 M CH ₃ COOH	(b) 5	M CH ₃ COOH
(c)	5 M HCl	(d) 1	$M NH_4OH$

- **101.** The *pH* value of decinormal solution of NH_4OH which is 20% ionised, is [CBSE PMT 1998] (b) 14.70 (a) 13.30 (c) 12.30 (d) 12.95
- **102.** A physician wishes to prepare a buffer solution at pH = 3.58 that efficiently resists changes in pHyet contains only small concentration of the buffering agents. Which of the following weak acids together with its sodium salt would be best to use [CBSE PMT 1997]

(a) m – chlorobenzoic acid ($pK_a = 3.98$)

(b) p – chlorocinnamic acid ($pK_a = 4.41$)

- (c) 2, 5 dihydroxy benzoic acid ($pK_a = 2.97$)
- (d) Acetoacetic acid $(pK_a = 3.58)$
- 103. In a mixture of a weak acid and its salt, the ratio of concentration of acid to salt is increased tenfold. The *pH* of the solution
- (a) Decreases by one (b) Increases oneby tenth
 - (c) Increases by one (d) Increases ten-fold
- 104. When an acid or alkali is mixed with buffer solution, then *pH* of buffer solution [CPMT 1997]
 - (a) Not changes (b) Changes slightly
 - (d) Decreases (c) Increases
- 105. How much sodium acetate should be added to a 0.1 m solution of CH_3COOH to give a solution of $pH = 5.5 (pK_a \text{ of } CH_3COOH = 4.5)$ [KCET 1996] $(h) \cap c$

(a)	$0.1 \ m$	(b)	0.2 m

(c) 1.0 m (d) 10.0 m

- of the aqueous solution containing **106.** The *pH* 0.49 gm of H_2SO_4 in one litre is [EAMCET 1997] [RI(M)T21997] (b) 1 (c) 1.7 (d) 0.3 107. Which of the following solutions can act as buffer [JIPMER 1997] (a) 0.1 molar aq. NaCl (b) 0.1 molar ag. $CH_3COOH + 0.1$ molar NaOH **Pb. PMT 19981** (c) 0.1 molar aq. ammonium acetate (d) None of the above **108.** The pH of a solution obtained by mixing 50 ml of 0.4 N HCl and 50 ml of 0.2 N NaOH is [KCET 1996] (a) $-\log 2$ (b) $-\log 0.2$ (c) 1.0 (d) 2.0 **109.** Which of the following is a buffer [MP PMT 1991; BHU 1995] (a) $NaOH + CH_3COONa$ $\begin{array}{c} \textbf{[CPMT 1987]} \\ \textbf{(b)} \quad NaOH + Na_2SO_4 \end{array}$ (c) $K_2 SO_4 + H_2 SO_4$ (d) $NH_4OH + CH_3COONH_4$ 110. If 4.0 gm NaOH is present in 1 litre solution, then its *pH* will be [CPMT 1989] (a) 6 (b) 13 (c) 18 (d) 24 **111.** The pOH of beer is 10.0. The hydrogen ion
- concentration will be [MP PMT 1994] (a) 10⁻² (b) 10^{-10}
 - (c) 10^{-8} (d) 10^{-4}
- 112. When a buffer solution of sodium acetate and acetic acid is diluted with water [CPMT 1985] (a) Acetate ion concentration increases
 - (b) H^+ ion concentration increases
 - (c) OH^{-} ion concentration increases
 - (d) H^+ ion concentration remain unaltered
- **113.** What is the *pH* of $Ba(OH)_2$ if normality is 10
 - [KCET 1996]

[CPMT 1996]

(c) 7

(d) 9 **114.** What will be the pH of a solution formed by

(b) 10

mixing 40 ml of 0.10 M HCl with 10 ml of 0.45 M NaOH

[Manipal	MEE	1995	

11.).		P	moles / litr			[BHU 1981]
115.	The	pН	of	а	solution	having
	(c) 8		(d) 6			
	(a) 12					

(a) 1	(b) 2
(c) 3	(d) 4

	372 Ionic Equilibr	ium							
116.	If 0.4 gm NaOH is prese	ent in 1 <i>litre</i>	solution	, then		(a) Basic		(b) Acid	
	its <i>pH</i> will be	[CPMT	1985;	BHU		(c) Neut			(a) and (b)
	1980]				128.	The <i>pH</i>	of a solution	is increased	l from 3 to 6. If
	(a) 2	(b) 10				H^+ ion co	oncentration v	will be	[EAMCET 1998
	(c) 11	(d) 12				(a) Redu	ced to half		
17.	Which of the following i	is not a Brons	sted acid	l [BHU 19	97]	(b) Doub	oled		
	(a) $CH_3NH_4^+$	(b) CH_3COC	2-			(c) Redu	ced by 1000 t	imes	
	(c) H_2O	(d) HSO_{4}^{-}				(d) Incre	ased by 1000	times	
18.	pH of 0.005 $M H_2 SO_4$ s		be[NCER	T 1980]	129.				and it remain
	(a) 0.005	(b) 2						CO_2 with	ich is absorbe
	(c) 1	(d) 0.01				then its j	pH will be	ADT Dihow 1	
19.	A buffer solution is a mi	xture of	[МР РМТ	1987]		(a) Great	یں ter than 7	ADI BIIIAFI	984; DPMT 2002
	(a) Strong acid and stro	ong base				(b) Less			
	(b) Weak acid and weak	base				(C) 7			
	(c) Weak acid and conju	ıgate acid					nds on ionic p	roduct of w	ator
	(d) Weak acid and conju	-			120	_	-		<i>H</i> is to be raise
20.	When pH of a solution	n decreases,	its hyd	rogen	130.				
	ion concentration		DT Bihaı	1981]				the origina	l solution has f
	(a) Decreases	(b) Increas				be [MP I			
	(c) Rapidly increases	(d) Remain	s a	lways		(a) Doub			
	tant					(b) Halve		times	
21.	If the pH of a solution	n is 4.0 at 2	$5^{\circ}C$, its	pOH			eased hundred		
	would be $(K_w = 10^{-14})$	I	[МР РМТ	1989]	101		eased hundred		connet est es
	(a) 4.0	(b) 6.0			131.	buffer	i the followin	ig solutions	cannot act as
	(c) 8.0	(d) 10.0				builter			[EAMCET 1998
22.	An aqueous solution wh	ose $pH = 0$ is	5			(a) NaH	$_2PO_4 + H_3PO_4$		[
		[CPMT 197	'6; DPMT	1982]			$COOH + CH_3CC$	OMa	
	(a) Alkaline	(b) Acidic					-	0111	
	(c) Neutral	(d) Amphot	eric			(c) <i>HCl</i> +	$+ NH_4Cl$		
23.	In a solution of acid H	+ concentrati	ion is 10	$0^{-10} M.$		(d) H_3PC	$D_4 + Na_2 HPO_4$		
-	The <i>pH</i> of this solution v				132.	Assuming	g complete	ionisation,	the <i>pH</i> o
	(a) 8	(b) 6				0.1 <i>M HC</i>	lis 1. The m	olarity of	H_2SO_4 with the
	(c) Between 6 and 7	(d) Between	n 3 and 6	5		same <i>pH</i>	is		
24.	The concentration of l	hydronium ((H_3O^+) i	on in					[KCET 1998
	water is	-	-			(a) 0.2		(b) 0.1	
		[0	CET Pune	1998]		(c) 2.0		(d) 0.05	
	(a) Zero	(b) 1×10^7 g	m ion/litr	·e	133.	The <i>pH</i> c	of blood is		
		(d) 1×10^{-7}	am ion / li	tua		(a) 5.2		(b) 6.3	
	., .		-			(c) 7.4		(d) 8.5	
25.	A solution whose <i>pH</i> val		an 7 will	be	124		of 10^{-8} molar a		tion of <i>HCl</i> is
	(a) Basic	(b) Acidic			-34.	-		-	AT 1987; IIT 198
_	(c) Neutral	(d) Buffer				_			99; BCECE 200
26.	When the <i>pH</i> of a solut		hydroge	en ion		(a) -8			
	concentration in moles	-		_		(b) 8			
		[NCERT 19	973; MNR	1979]			(Between 6 a	nd 7)	
	(a) 1×10^{-14}	(b) 1×10^{-2}					(Between 7 a		
	(c) 1×10^{-7}	(d) 1×10^{-12}			10-				
27.	A base is dissolved in w	ater yields a	solution	n with	135.		imperature in	creases, the	e pH of a KOH
	a hydroxide ion concen	tration of O	.05 mol	$litre^{-1}$.		solution			LIDSEAT SCO
	The solution is		[AFMC	C 1997]		(2) 147:11	decreases		[UPSEAT 200
						(a) VVIII (uccicases		

Get More Learning Materials Here : 💻

CLICK HERE

				Ionic	Equilibrium 373
	(b) Will increases			(c) <i>Pb(OH)Cl</i>	(d) Na_2HPO_4
	(c) Remains constant		147.	Given a 0.1M solution	of each of the following.
	(d) Depends upon conce	ntration of <i>KOH</i> solution	17	Which solution has the	•
136.		oncentration in a given		(a) NaHSO $_4$	(b) NH_4Cl
0		oH will be [EAMCET 1978]		(c) HCl	(d) <i>NH</i> ₃
	(a) 6	(b) 4	148		hich pair of solutions is not
	(c) 3.22	(d) 2	140.	a buffer solution	men pair or solutions is not
				(a) $NH_4Cl + NH_4OH$	
137.	The <i>pH</i> of $\frac{N}{100}$ <i>HCl</i> would be a second se	ıld be approximately		(b) $NaCl + NaOH$	
	100	[CPMT 1971; DPMT 1982, 83;		(c) $Na_2HPO_4 + Na_3PO_4$	
		P PMT 1991; Bihar MEE 1996]		(d) $CH_3COOH + CH_3COO$)Na
	(a) 1	(b) 1.5	140		onstant of an acid HA is
			149.		1 molar solution of the acid
	(c) 2	(d) 2.5		will be approximately	NCERT 1979
130.		sistant to change of pH		(a) Three	(b) Five
	[BHU 1979]	acid or a base is known as		(c) One	(d) Six
	(a) A colloid	(b) A crystalloid	150.	<i>pH</i> value of $N/10$ NaOl	
	(c) A buffer	(d) An indicator	-	-	Pb. CET 2001; Pb. PMT 2002]
39.	$10^{-6} M$ HCl is diluted to	100 times. Its pH is		(a) 10	(b) 11
		[CPMT 1984]		(c) 12	(d) 13
	(a) 6.0	(b) 8.0	151.		n borate has a <i>pH</i> or
	(c) 6.95	(d) 9.5	-	approximately	•
40.	The <i>pH</i> of a 10^{-10}	molar <i>HCl</i> solution is			[JIPMER 2001]
-	approximately			(a) < 7	(b) > 7
		[NCERT 1977]		(c) = 7	(d) Between 4 to 5
	(a) 10	(b) 7	152.	If pH of A , B , C and L) are 9.5, 2.5, 3.5 and 5.5
	(c) 1	(d) 14		respectively, then stron	gest acid is [AFMC 1995]
41.		on is 1.0×10^{-6} mole/litre in		(a) A	(b) C
	a solution. Its <i>pH</i> value			(c) D	(d) B
	(a) 12	[MP PMT 1985; AFMC 1982] (b) 6	153.		e of a solution is 6. The
	(a) 12 (c) 18	(d) 24		solution is	
42.		the negative logarithm to			[AFMC 2001]
1	the base 10 of its hydrog			(a) Basic	(b) Acidic
		[Manipal MEE 1995]	1 - 4	(c) Neutral A certain buffer s	(d) Both (b) and (c)
	(a) Moles per litre	(b) Millimoles per litre	154.		solution contains equal
	(c) Micromoles per litre	e (d) Nanomoles per litre			nd HX . The K_a for HX is
43.	When 10^{-8} mole of <i>HCl</i>	is dissolved in one litre of		10^{-8} . The <i>pH</i> of the bus	
	water, the pH of the sol	ution will be			[UPSEAT 2001]
		[CPMT 1973, 94; DPMT 1982]		(a) 3	(b) 8
	(a) 8	(b) 7		(c) 11	(d) 14
	(c) Above 8	(d) Below 7	155.		ant of <i>HCN</i> is 5×10^{-10} . The
44.		containing 10 <i>ml</i> of 0.1 <i>N</i>			pared by mixing 1.5 mole of
		$05 N H_2 SO_4$ would be		up the total volume to (<i>KCN</i> in water and making $5 dm^3$ is
		PMT 1987; Pb. PMT 2002,04]		-	
	(a) 0	(b) 1 (d) 7		(a) 7.302	(b) 9.302
	(c) > 7			(c) 8.302	(d) 10.302
	(c) > 7 The pH of 0 001 molar	(d) 7 solution of <i>HCL</i> will be			
	The pH of 0.001 molar	solution of <i>HCl</i> will be	156.	Which buffer solution	
	The <i>pH</i> of 0.001 molar [MP PET 1986; MP PET	solution of <i>HCl</i> will be /PMT 1988; CBSE PMT 1991]	156.		out of the following will
	The <i>pH</i> of 0.001 molar [MP PET 1986; MP PET (a) 0.001	solution of <i>HCl</i> will be	156.	Which buffer solution have $pH > 7$	out of the following will [MP PET 2001]
145.	The <i>pH</i> of 0.001 molar [MP PET 1986; MP PET (a) 0.001 (c) 2	solution of <i>HCl</i> will be /PMT 1988; CBSE PMT 1991] (b) 3		Which buffer solution	out of the following will [MP PET 2001]

Get More Learning Materials Here : 📕

	374 Ionic Equilibriu				
	(c) CH_3COONH_4				2; CPMT 1994; MP PET 1994]
	(d) $NH_4OH + NH_4Cl$			(a) HCl and NaCl	(b) $NaOH$ and $NaNO_3$
57 ۰	The pK_a of equimolecul	lar sodium acetate and		(c) KOH and KCl	(d) NH_4OH and NH_4Cl
	acetic acid mixture is 4.74	1. If <i>pH</i> is [DPMT 2001]	166.	If the pH of a solution	tion of an alkali metal
	(a) 7 ((b) 9.2		-	oncentration of hydroxide
		(d) 14		is [JIPMER 2000]	
58.	<i>pH</i> of <i>NaCl</i> solution is	[CET Pune 1998]		(a) Between 0.1 M and 1	
	(a) 7 ((b) Zero		(b) More than $1 M$	
	(c) >7 ((d) <7		(c) Less than $0.001 M$	1. 17.07
59.	A solution of sodium cl	hloride in contact with	167	(d) Between 0.01 M and The rK of acetulcalic	
	atmosphere has a pH of a	bout [NCERT 1972, 77]	107.		ylic acid (aspirin) is 3.5. ice in human stomach is
	(a) 3.5 ((b) 5			in the small intestine is
	(c) 7 ((d) 1.4		about 8. Aspirin will be	in the sman mestine is
60.	Which would decrease t	the <i>pH</i> of $25 cm^3$ of a			[IIT 1988; KCET 2003]
	0.01 <i>M</i> solution of hydroc	hloric acid [MH CET 2001]		(a) Unionized in the s	mall intestine and in the
	(a) The addition of $25 cm^3$	0.005 M hydrochloric	stom		
	acid	-		in the small intestine and	
	(b) The addition of $25 cm^3$		he		
	acid	of 0.02 m light ochiofic		stomach	
	(c) The addition of magne	sium metal	(c) Ionized in the stomach and almost unionized		
	(d) None of these			in the small intestin	
61	The condition for minim	um change in <i>"H</i> for a		(d) Ionized in the sm unionized in the stor	all intestine and almost
	buffer solution is	-	168	The concentration of hy-	
	(a) Isoelectronic species a		100.	The concentration of my	[MP PET 1990]
	(b) Conjugate acid or base is added			(a) 8	(b) 1×10^{-7}
	(c) $pH = pK_a$	i i uuuuu		(c) 7	(d) 1/7
	(d) None of these		160		of <i>HCl</i> is [CBSE PMT 1995]
62	A buffer solution with pF		109.	(a) Less than O	(b) 2
54.	mixing NH_4Cl and NH_4Ol			(a) Less than 0 (c) 0	(d) 1
	of moles of NH_4Cl that		170.	The <i>pH</i> of $1 N H_2 O$ is	(u) 1 [CPMT 1988]
		$= 1.8 \times 10^{-5}$] [UPSEAT 2001]	-, ••	(a) 7	(b) >7
				(a) 7 (c) <7	(d) o
		(b) 2.6	1771		f a solution is increased by
<u> </u>		()	1/1.	10 times its <i>pH</i> will be	f a solution is increased by [DCE 2000]
63.	The ionization constant o 10^{-4} . What should be the			(a) Increase by one	(b) Remains unchanged
	we have to prepare a bu			(c) Decrease by one	(d) Increase by 10
		alts [CPMT 2000; KCET 2000;	1172C	•	-
		(b) 10:1		HCl to make the hyd	drogen ion concentration
		(d) 4:5		about 0.01 mole / litre. The	e <i>pH</i> of gastric juice is [NCERT 19
64.	Which solution has the hig	ghest <i>pH</i> value [JIPMER 2000]	(a) 0.01	(b) 1
	(a) 1 <i>M KOH</i>			(c) 2	(d) 14
	(b) $1MH_2SO_4$		173.		emical will decrease the ration of an acetic acid
	(c) Chlorine water			solution	[MP PMT 1990]
	(d) Water containing carb	on dioxide		(a) NH_4Cl	(b) $Al_2(SO_4)_3$
65.	One weak acid (like CH			(c) $AgNO_3$	(d) <i>HCN</i>
	base together with salt		184	-	
	buffer solution. In wh	5	1/4.	The one which has the h	ngnest value of pri 18
	characteristic is found	run this type of		(a) Distilled water	

characteristic is found

CLICK HERE ≫

_							373
	(b) NH_3 solution in wa	ter		186.	The concentration o	f hydrogen ion [<i>H</i> ⁺] in 0.01 <i>M</i>
	(c) <i>NH</i> ₃				HCl is		
	(d) Water saturated with	ith <i>Cl</i> ₂			() 10 ¹²		[EAMCET 1979]
/5.	The solution of Na_2CO_3	has <i>pH</i>	[AMU 1988]		(a) 10^{12}	(b) 10^{-2}	
	(a) Greater than 7	(b) Less tha		. 0 -	(c) 10^{-1}	(d) 10 ⁻¹²	, ,,,,
	(c) Equal to 7	(d) Equal to		187.	A solution of weak equal volume of w		
6	Which is not a buffer s	-	[CPMT 1990]		will not change	ater. which of	the following
0.	(a) $NH_4Cl + NH_4OH$	oration	[CPM1 1990]				[JIPMER 1997]
					(a) Strength of the a	acid	
	(b) $CH_3COOH + CH_3CO$	ONa			(b) The value of $[H_3]$	O^+]	
	(c) CH_3COONH_4				(c) <i>pH</i> of the solution	on	
	(d) Borax + Boric acid				(d) The degree of di		đ
7.	What will be hydrogen	ion concentra	tion in moles	188.	Ka of H_2O_2 is of the		[DCE 2004]
	$litre^{-1}$ of a solution, wh	ose pH is 4.58	[UPSEAT 2001]		(a) 10^{-12}	(b) 10 ⁻¹⁴	
	(a) 2.63×10^{-5}	(b) 3.0×10^{-5}	5		(c) 10^{-16}	(d) 10^{-10}	
	(c) 4.68	(d) None of		180	Equivalent weight of	• •	[UPSEAT 2004]
8.	Assuming complete dis			109.	(a) Depends on the 1		
	M NaOH solution is equ	ual to			(b) Depends upon t		
	[NCERT 1975; CPMT		82; BHU 1997]	pres	ent		
	(a)	2.0 (b)	14.0		(c) Is always same		
	(c) 12.0	(d) 0.01			(d) None of the above		
9.	50 <i>ml</i> of 2 <i>N</i> acetic			190.	<i>pH</i> scale was introd	-	[UPSEAT 2004]
	1 N sodium acetate	solution wil	ll have an		(a) Arrhenius	(b) Sorense	en
	approximate <i>pH</i> of				(c) Lewis	(d) Lowry	
			MT/PET 1988]	191.	Buffer solution is pr		
	(a) 4	(b) 5			(a) Strong acid + its	-	
^	(c) 6 The hydrogen ion	(d) 7 concentration	of 0.001		(b) Weak acid + its s		
0.	<i>M</i> NaOH solution is	concentration	[AFMC 1983]		(c) Strong acid + its		
	(a) 1×10^{-2} mole / litre	(b) 1×10^{-11}		102	(d) Weak acid + its s The <i>p</i> H of millimolar	•	
				192.	(a) 1	(b) 3	[MH CET 2004]
1	(c) 1×10^{-14} mole / litre	(d) $1 \times 10^{-12} m$			(a) 1 (c) 2	(d) 4	
1.	A weak monoprotic aci solution. What will be			102			
	(a) 1	(b) 2		-22.	(a) <i>NaOH</i>	(b) NH_3	
	(c) 3	(d) 11				5	
2.	<i>pH</i> of a solution is		droxide ion		(c) BCl_3	(d) All of th	
	concentration of the so	-		194.		he <i>pH</i> value	ot 0.05 M
	[NCERT 1981; C	BSE PMT 1991;	MP PMT 1994]		$Ba(OH)_2$ solution		
	(a) 10 ⁻⁴	(b) 10 ⁻¹⁰					[CPMT 2004]
	(c) 10^{-2}	(d) 10 ⁻¹²			(a) 12	(b) 13	
3.	The pH of an aqu	leous solution	n containing		(c) 1	(d) 12.96	
	$[H^+] = 3 \times 10^{-3} M$ is	[MF	PET 2001,04]	195.	In a mixing of aceti ratio of concentrati		
	(a) 2.471	(b) 2.523			increased ten times.		
	(c) 3.0	(d) – 3			(a) Increase by one	(b) Decreas	
	<i>pH</i> of blood is	maintained	constant by		(c) Decrease ten fol		
4.				196.	The rapid change o		
4.	mechanism of						
4.			MH CET 2002]	1901	point of an acid-b		
4.	(a) Common ion effect	(b) Buffer		1901	point of an acid-baindicator detection.	ase titration is <i>p</i> H of the solut	the basis of ion is related
	(a) Common ion effect(c) Solubility	(b) Buffer (d) All of th	ese	1901	point of an acid-b indicator detection. to ratio of the com	ase titration is <i>p</i> H of the solut acentrations of	the basis of ion is related the conjugate
	(a) Common ion effect	(b) Buffer (d) All of th		1900	point of an acid-baindicator detection.	ase titration is <i>p</i> H of the solut acentrations of	the basis of ion is related the conjugate

Get More Learning Materials Here : 💻

(a)
$$\log \frac{[HIn]}{[In^-]} = pH - pK_{In}$$
 (b) $\log \frac{[In^-]}{[HIn]} = pH - pK_{In}$
(c) $\log \frac{[In^-]}{[HIn]} = pK_{In} - pH$ (d) $\log \frac{[HIn]}{[In^-]} = pK_{In} - pH$

197. Which of the following statement(s) is(are) correct

[IIT 1998]

- (a) The pH of $1.0 \times 10^{-8} M$ solution of HCl is 8
- (b) The conjugate base of $H_2PO_4^-$ is HPO_4^{2-}
- (c) Autoprotolysis constant of water increases with temperature
- (d) When a solution of a weak monoprotic acid is titrated against a strong base, at half neutralization point $pH = \frac{1}{2}pK_a$
- **198.** An aqueous solution of sodium carbnate has a pH
greater than 7 becaue[DCE 2003]

(a) It contains more carbonate ions than $H_2 O$ molecules

- (b) Contains more hydroxide ions than carbonate ions
 - (c) Na^+ ions react with water
 - (d) Carbonate ions react with H_2O
- **199.** A *pH* of 7 signifies **[CPMT 1974; DPMT 1982]**
 - (a) Pure water (b) Neutral solution
 - (c) Basic solution (d) Acidic solution
- **200.** Assuming complete dissociation, which of the following aqueous solutions will have the same pH value

[Roorkee Qualifying 1998]

[Roorkee 2000]

CLICK HERE

- (a) 100 ml of 0.01 M HCl
- (b) 100 ml of 0.01 $M H_2 SO_4$
- (c) 50 ml of 0.01 M HCl
- (d) Mixture of 50 ml of 0.02 $M H_2SO_4$ and 50 ml of 0.02 M NaOH

201. A buffer solution can be prepared from a mixture of

[IIT 1999; KCET 1999; MP PMT 2002]

- (a) Sodium acetate and acetic acid in water
- (b) Sodium acetate and hydrochloric acid in water
- (c) Ammonia and ammonium chloride in water
- (d) Ammonia and sodium hydroxide in water
- **202.** Which of the following will not function as a buffer solution
 - (a) *NaCl* and *NaOH*
 - (b) NaOH and NH_4OH
 - (c) CH_3COONH_4 and HCl
 - (d) Borax and boric acid
- **203.** Which one of the following statements is not true [AIEEE 2003]

- (a) The conjugate base of $H_2PO_4^-$ is HPO_4^{2-}
- (b) pH + pOH = 14 for all aqueous solutions
- (c) The *pH* of $1 \times 10^{-8} M HCl$ is 8
- (d) 96,500 coulombs of electricity when passed through a *CuSO*₄ solution deposits 1 *gram* equivalent of copper at the cathode
- **204.** The *pH* value of 0.1 *M HCl* is approximately 1. What will be the approximate *pH* value of 0.05 $M H_2SO_4$

- **205.** The K_{sp} of $Mg(OH)_2$ is $1 \times 10^{-12}, 0.01 M Mg(OH)_2$ will precipitate at the limiting pH [DPMT 2005] (a) 3 (b) 9 (c) 5 (d) 8
- **206.** The *pH* of an aqueous solution having hydroxide ion concentration as 1×10^{-5} is [MP PMT 1991] (a) 5 (b) 9 (c) 4.5 (d) 11

Critical Thinking **Objective Questions**

1. The K_{SP} of AgI is 1.5×10^{-16} . On mixing equal volumes of the following solutions, precipitation will occur only with

[AMU 2000]

[MP PMT 1991]

- (a) $10^{-7} M Ag^+$ and $10^{-19} M I^-$
- (b) $10^{-8} M Ag^+$ and $10^{-8} M I^-$
- (c) $10^{-16} M Ag^+$ and $10^{-16} M I^-$
- (d) $10^{-9} M Ag^+$ and $10^{-9} M I^-$
- 2. The strongest Bronsted base in the following anion is

[IIT 1981; MP PET 1992, 97; MP PMT 1994; RPMT 1999; KCET 2000; AIIMS 2001; UPSEAT 2002; AFMC 2002; Pb. CET 2004]

- (a) ClO^{-} (b) ClO^{-}_{2}
- (c) ClO_{3}^{-} (d) ClO_{4}^{-}
- **3.** Which one of the following compound is not a protonic acid

	[CBSE PMT 2003]
(a) $SO_2(OH)_2$	(b) $B(OH)_3$
(c) <i>PO</i> (<i>OH</i>) ₃	(d) $SO(OH)_2$

4. Calculate the hydrolysis constant of the salt containing NO_2 . Given the K_a for HNO_2 = 4.5×10^{-10}

🕀 www.studentbro.in

]	onic Equilibrium 377	
		[UPSEAT 20	001]	(a) 1.0×10^{-5}	(b) 1.0×10^{-9}	
	(a) 2.22×10^{-5}	(b) 2.02×10^{5}		(c) 1.0×10^9	(d) 1.0×10^{14}	
	(c) 4.33×10^4	(d) 3.03×10^{-5}	14.	The pH of $0.1 M$	solution of the following sa	lts
	The molar solubility	$(mol \ L^{-1})$ of a sparing	ngly	increases in the o	-	
	-	s 's'. The correspond		(a) $NaCl < NH_4Cl <$	< NaCN < HCl	
	solubility product is	K_{sp} . 's' is given in terms	s of	(b) $HCl < NH_4Cl <$	NaCl < NaCN	
	$_{K_{sp}}$ by the relation	[AIEEE 2004]		(c) $NaCN < NH_4Cl$	< NaCl < HCl	
	-F	(b) $(100 K)^{1/4}$		(d) $HCl < NaCl < N$		
	(a) $s = (256 K_{sp})^{1/5}$	(b) $s = (128 K_{sp})^{1/4}$	15.		wing is the strongest acid	
	(c) $s = (K_{sp} / 128)^{1/4}$	(d) $s = (K_{sp} / 256)^{1/5}$	-01		[AMU 1999; MH CET 1999, 200) 2]
	Electrophiles are	[RPET 20	000]	(a) $SO(OH)_2$	(b) $SO_2(OH)_2$	
	(a) Lewis acids	(b) Lewis base		(c) <i>ClO</i> ₃ (<i>OH</i>)	(d) $PO(OH)_{3}$	
	(c) Bronsted acid	(d) Bronsted base	16.	The strongest of t	he four acids listed below is	
	Total number of mol	es for the reaction 2H	I ≓	_	[NCERT 198	3 4]
	$H_2 + I_2$. if α is degree	of dissociation is[CBSE P	PMT 1996]	(a) HCOOH	(b) <i>CH</i> ₃ <i>COOH</i>	
	(a) 2	(b) $2-\alpha$		(c) ClCH ₂ COOH	(d) FCH ₂ COOH	
	(c) 1	(d) $1-\alpha$	17.		n can be described as an aci	
	Which one is a Lewis a	acid [RPMT 19	997]		g the Lewis acid-base definiti	
	(a) ClF_3	(b) H_2O		-	Bronsted-Lowry definition[AII]	MS 1
	(c) <i>NH</i> ₃	(d) None of these		(a) $2NH_3 + H_2SO_4$		
	5		'nnσ	(b) $NH_3 + CH_3COC$	$DH \rightleftharpoons NH_4^+ + CH_3COO^-$	
	Heat of neutralisation of weak acid and strong base is less than the heat of neutralisation of strong acid and strong base due to			(c) $H_2O + CH_3COO$	$DH \rightleftharpoons H_3O^+ + CH_3COO^-$	
				$(d) \begin{bmatrix} \mathbf{KCET} 2002 \end{bmatrix}$	$4NH_3 \rightleftharpoons \left[Cu(NH_3)_4\right]^{2+} + 4H_2O$	
		be spent for the t				
	dissociation of wea		18.		H^- is stronger base than H^-	
		nd strong base is not sta	ble	-	DH^- . Which of the followi ur if sodium hydride (<i>NaH</i>)	-
	(c) Incomplete dissoci			dissolved in water	-	
	(d) Incomplete neutra		The	(a) $H^{-}(aq) + H_2O \rightarrow$		
).		ds <i>A</i> and <i>B</i> are 4 and 5.		_	-	
	(a) Acid A is 10 times	acids are related as[KCE	1 2001]	(b) $H^{-}(aq) + H_2O(l)$	-	
		strengtha of acid $B = 4:5$		(c) $H^- + H_2 O \rightarrow N O$	reaction	
	e e	the two acids can not	he	(d) None of these		
	compared	the two uclus can not	19.		tant of a weak acid is 1×10^{-1}	
	(d) Acid <i>B</i> is 10 times	stronger than acid A		Equilibrium const base is	ant of its reaction with stro [UPSEAT 2003]	ng
•	The dissociation cons	tant of two acids HA_1	and	(a) 1×10^{-4}	(b) 1×10^{10}	
	HA_2 are 3.14×10^{-4} a	and 1.96×10^{-5} respectiv	ely.	(a) 1×10^{-10} (c) 1×10^{-10}	(d) 1×10^{14}	
	The relative strengt	th of the acids will	be 20.		(I) H_2SO_3 (II) H_3PO_3 and (I	11)
	approximately	[RPMT 20	20.	-	easing order of acidity [UPSEAT	
	(a) 1:4	(b) 4 : 1		(a) I > III > II	(b) I > II > III	1 200
	(c) 1:16	(d) 16 : 1		(c) II > III > I	(d) III > I > II	
•	-	f ammonium acetate is	21.		f liquid ammonia occurs a	as,
		[NCERT 1980, 81; RPMT 19	999]		$K = 10^{-10}$. In this solvent,	
	(a) Faintly acidic	(b) Faintly basic		acid might be	[JIPMER 200	
	(c) Fairly acidic	(d) Almost neutral	•_	(a) NH_4^+		
		istant of a weak acid ibrium constant for		(b) <i>NH</i> ₃		
•		minum constant for				
3.	reaction with strong b		the	(c) Any species th	at will form MU^+	

Get More Learning Materials Here : 📕

r www.studentbro.in

(d) All of these				
$\Delta H_f(H_2O) = X;$	Hea	t of	neutralisation	of
CH_3COOH and	NaOH	will be	[BHU 20	003]
(a) Less than 2	X	(b)	Less than X	
(c) <i>X</i>		(d)	Between X and 2X	K
	$\Delta H_f(H_2O) = X;$ $CH_3COOH \text{ and}$ (a) Less than 2.	$\Delta H_f(H_2O) = X;$ Heat CH_3COOH and $NaOH$ (a) Less than $2X$	$\Delta H_f(H_2O) = X$; Heat of CH_3COOH and $NaOH$ will be (a) Less than 2X (b)	$\Delta H_f(H_2O) = X;$ Heat of neutralisation CH_3COOH and $NaOH$ will be [BHU 2 (a) Less than 2X (b) Less than X

Which of the following oxides will not give OH^- in 23. aqueous solution [NCERT 1980] (b) *MgO* (a) Fe_2O_3

(c) Li_2O	(d)	K_2O
-------------	-----	--------

A precipitate of CaF_2 ($K_{sp} = 1.7 \times 10^{-10}$) will be 24. obtained when equal volume of the following are mixed

[MP PMT 1990, 95; IIT 1982; MNR 1992]

- (a) $10^{-4} M Ca^{2+}$ and $10^{-4} M F^{-}$
- (b) $10^{-2} M Ca^{2+}$ and $10^{-3} M F^{-}$
- (c) $10^{-5} M Ca^{2+}$ and $10^{-3} M F^{-}$
- (d) $10^{-3} M Ca^{2+}$ and $10^{-5} M F^{-}$
- The degree of hydrolysis of a salt of weak acid 25. and weak base in its 0.1 *M* solution is found to be 50%. If the molarity of the solution is 0.2 M, the percentage hydrolysis of the salt should be[AMU 1999] (a) 50% (b) 35% (c) 75% (d) 100% **26.** The pH of 0.1 M solution of a weak monoprotic
- acid 1% ionized is [UPSEAT 2001; Pb. PMT 2001] (a) 1 (b) 2

(c) 3	(d) 4
-------	-------

Which one is the strongest acid 27.

> [MH CET 1999; AMU 1999,2000; Pb.CET 2001,03; MP PET 2001]

(a) HClO (b) $HClO_{2}$

(c)	H_2SO_4	(d) $HClO_4$

Which of the following is Lewis acid [Pb. CET 2000] 28. (a) S (b) : *CH*₂

(c)	$(CH_3)_3 B$	(d) All of these

The solubility product of $Mq(OH)_2$ is 1.2×10^{-11} . The 29. solubility of this compound in gram per 100 cm^3 of solution is

> [Roorkee 2000] (a) 1.4×10^{-4} (b) 8.16×10^{-4} (c) 0.816 (d) 1.4

30. What is $[H^+]$ of a solution that is 0.01 M in HCN and 0.02 M in NaCN

 $(K_a \text{ for } HCN = 6.2 \times 10^{-10})$ [MP PMT 2000] (a) 3.1×10^{10} (b) 6.2×10^5 (c) 6.2×10^{-10} (d) 3.1×10^{-10}

31.	Which is neucleophile (a) BF_3	[DPMT 2001; RPMT 2002] (b) <i>NH</i> ₃
	(c) $BeCl_2$	(d) H_2O
32.	-	is $2 \times 10^{-4} mol/l$ at $25^{\circ}C$. The
5=.	K_{sp} value for <i>CuBr</i> is	[AIIMS 2002]
	(a) $4 \times 10^{-8} mol^2 l^{-2}$	(b) $4 \times 10^{-11} mol^2 L^{-1}$
	(a) $4 \times 10^{-4} mol^{2} l^{-2}$	(d) $4 \times 10^{-15} mol^2 l^{-2}$
33.	• •	Na_2SO_4 is isotonic with a
55.	0.010 M solution of glu	cose at same temperature. disociation of Na_2SO_4 is
		[IIT JEE Screening 2004]
	(a) 25%	(b) 50%
	(c) 75%	(d) 85%
34.	K_{sp} for $Cr(OH)_3$ is 2.7×10^{-10}	10^{-31} . What is its solubility
	in moles / litre.	[JEE Orissa 2004]
	(a) 1×10^{-8}	(b) 8×10^{-8}
	(c) 1.1×10^{-8}	(d) 0.18×10^{-8}
35.	-	.74 . The concentration of
	CH_3COONa is 0.01 M. T	The pH of CH_3OONa is
		[Orissa JEE 2004]
	(a) 3.37 (c) 4.74	(b) 4.37 (d) 0.474
36.		roduct of $AgBrO_3$ and
0		nd 2×10^{-5} respectively, the
	- 2 1	he solubilities of these can
	(a) $S_{AgBrO_3} > S_{Ag_2SO_4}$	
	(c) $S_{AgBrO_3} = S_{Ag_2SO_4}$	(d) $S_{AgBrO_3} \approx S_{Ag_2SO_4}$
37.		t of phenol is higher than
	(a) Phenoxide ion is bul	lkier than ethanoxide
	(b) Phenoxide ion i ethanoxide	s stronger base than
	(c) Phenoxide ion delocalisation	0
	(d) Phenoxide ion is les	
38.		the dissociation constant salt <i>NaX</i> on reaction with
		ydrolysis of 0.1 <i>M</i> solution
		[IIT JEE Screening 2004]
	(a) 0.0001%	(b) 0.01%
	(c) 0.1%	(d) 0.15%
39.	-	$\mathbf{m} \qquad A^- + H_2 O \rightleftharpoons HA + OH^-$
		gree of hydrolysis of 0.001
	<i>M</i> solution of the salt is	
	(a) 10^{-3}	(b) 10^{-4}

(c) 10^{-5} (d) 10^{-6}

CLICK HERE ≫

40.	The sulphide ion con	centration [S ²⁻]in saturated		(c) $2.8 \times 10^{-9} ML^{-1}$	(d) $2.5 \times 10^7 ML^{-1}$
	H_2S solution is 1×10^{-10}	0^{-22} . Which of the following	47.	The solubility prod	uct of a binary weak
	-	uantitatively precipitated by		electrolyte is 4×10^{-10}	at 298 K. Its solubility in
	H_2S in the presence of	of dil. <i>HCl</i>		mol dm^{-3} at the same t	temperature is [KCET 2001]
	Sulphide	Solubility Product		(a) 4×10^{-5}	(b) 2×10^{-5}
	(I)	1.4×10^{-16}		(c) 8×10^{-10}	(d) 16×10^{-20}
	(II)	1.2×10^{-22}	48.	Solubility of <i>AgCl</i> at 2	$20^{\circ} C$ is $1.435 \times 10^{-3} gm per litre$.
	(III)	8.2×10^{-46}		The solubility product	of <i>AgCl</i> is
		5.0×10^{-34}		[CPMT 1989; BHU 1997;	AFMC 2000; CBSE PMT 2002]
	(IV)			(a) 1×10^{-5}	(b) 1×10^{-10}
	(a) I, II	(b) III, IV		(c) 1.435×10^{-5}	(d) 108×10^{-3}
	(c) II, III, IV	(d) Only I	49.	Ci -	acid at the experimental
41.	-	s of the following solutions from of $A_{2}C^{1}(K) = 1.8 \times 10^{-10}$		-	e percentage hydrolysis of
		tion of $AgCl(K_{sp} = 1.8 \times 10^{-10})$		0.1 <i>M</i> sodium acetate	
	will occur only with	BSE PMT PMT 1992; DCE 2000]		(a) 1×10^{-4}	(b) 1×10^{-2}
	(a) $10^{-4} M Ag^+$ and $10^{-4} M Ag^+$			(c) 1×10^{-3}	(d) 1×10^{-5}
	_		50.		y of $Ag_2CO_3(K_{sp} = 8 \times 10^{-12})$
	(b) $10^{-5} M Ag^+$ and $10^{-5} M Ag^+$	$^{-5}MCl^{-1}$		would be greatest in or	
	(c) $10^{-6} M Ag^+$ and $10^{-6} M Mg^+$	$^{-6}M\ Cl^-$		(a) $0.05 M Na_2 CO_3$	
	(d) $10^{-10} M Ag^+$ and 10	$0^{-10} M Cl^{-10}$		(c) Pure water	(d) $0.05 M NH_3$
40	_		51.	1	CuS, Ag_2S and HgS are
42.	1	<i>AB</i> is 1×10^{-10} . $[A^+] = 10^{-5} M$,		$10^{-31}, 10^{42}$ and 10^{-54}	respectively. The correct
		n of B^- will not give			y in water is [MP PMT 2003]
	precipitate of AB	[BHU 2003]		(a) $Ag_2S > HgS > CuS$	
	(a) 5×10^{-6}	(b) 1×10^{-5}			(d) $Ag_2S > CuS > HgS$
	(c) 2×10^{-5}	(d) 5×10^{-5}	52.	The <i>pH</i> of a soft drin concentration will be	k is 3.82. Its hydrogen ion [MP PET 1990]
43.		contains 10^{-7} mole hydrogen		(a) $1.96 \times 10^{-2} mol/l$	
±3.	ions. The degree of ion	nization in water will be [CPM?	Г 1985,		
	(a) 1.8×10^{-7} %	(b) $0.8 \times 10^{-9}\%$			at $25^{\circ}C$ containing $0.10 m$
	(c) 3.6×10^{-7} %	(d) $3.6 \times 10^{-9}\%$	53.	-	$.03m$ acetic acid is $(pK_a \text{ for } r)$
44.		ucts of AgCl and AgBr are			[AIIMS 2002; BHU 2002]
11.		0^{-13} respectively, then the			
		solubilities (denoted by the		(a) 4.09 (c) 6.10	(b) 5.09 (d) 7.09
	symbol'S') of these		54.		onised in 0.1 M solution. Its
	salts can correctly be	represented as[MP PET 1994]		pH is	
	(a) S of $AgBr$ is less t	han that of <i>AgCl</i>			[BVP 2004]
	(b) S of AgBr is great	er than that of <i>AgCl</i>		(a) 2 (c) 4	(b) 3 (d) 1
	(c) S of AgBr is equa	l to that of <i>AgCl</i>	55.		ct of As_2S_3 is 2.8×10^{-72} .
	(d) S of AgBr is 10^6	times greater than that of	55.	What is the solubility of	
AgCl	ļ	-		(a) 1.09×10^{-15} mole / litre	
1 5.	If the solubility prod	luct of lead iodide (Pbl_2) is			
		ubility in moles/litre will be [N	ір рмт	(b) 1.72×10^{-15} mole / litr	
	(a) 2×10^{-3}	(b) 4×10^{-4}		(c) 2.3×10^{-16} mole / litre	
	(c) 1.6×10^{-5}	(d) 1.8×10^{-5}		(d) 1.65×10^{-36} mole / litr	e
46.	.,	ty of $AgCl$ (s) in $0.1 M NaCl$ at	56.	For a weak acid HA	with dissociation constant
	$25^{\circ}C.$ $K_{sp}(AgCl) = 2.8 \times$	-	г	10^{-9} , <i>pOH</i> of its 0.1 <i>M</i>	solution is [CBSE PMT 1989] (b) 3
	*		L	(a) 9	(b) 3
	(a) $3.0 \times 10^{-8} ML^{-1}$	(b) $2.5 \times 10^{-7} ML^{-1}$		(c) 11	(d) 10

(a) $3.0 \times 10^{-8} ML^{-1}$ (b) $2.5 \times 10^{-7} ML^{-1}$

Get More Learning Materials Here : 📕

Regional www.studentbro.in **》**

(c) 11

CLICK HERE

(d) 10

Ionic Equilibrium 379

57.	The dissociation of water at $25^{\circ}C$ is $1.9 \times 10^{-7}\%$ and the density of water is $1.0 g/cm^3$. The ionisation constant of water is [IIT 1995] (a) 3.42×10^{-6} (b) 3.42×10^{-8}	66.	(a) 10.56 (c) 12.74 <i>pH</i> of a solution of an aqu
58.	(c) 1.00×10^{-14} (d) 2.00×10^{-16} What is the <i>p</i> H of 0.01 <i>M</i> glycine solution? For glycine, $Ka_1 = 4.5 \times 10^{-3}$ and $Ka_2 = 1.7 \times 10^{-10}$ at 298 <i>K</i>	67.	(a) 3.3 (c) 4.0 Calculate
	[AIIMS 2004] (a) 3.0 (b) 10.0		HCN lit
	(c) 6.1 (d) 7.2		(a) 4×10^{-10}
59.	The concentration of $[H^+]$ and concentration of		(b) 2×10
	$[OH^-]$ of a 0.1 aqueous solution of 2% ionised		(c) 2.5×
	weak acid is [Ionic product of water $= 1 \times 10^{-14}$]	60	(d) None
	[IOHIC product of water = 1 × 10] [DPMT 2004; CBSE PMT 1999]	68.	The num 0.3 <i>litre</i>
	(a) $2 \times 10^{-3} M$ and $5 \times 10^{-12} M$		(a) 0.00
	(b) $1 \times 10^{3} M$ and $3 \times 10^{-11} M$		(a) 0.00 (c) 0.00
	(c) $0.02 \times 10^{-3} M$ and $5 \times 10^{-11} M$	69.	The <i>pH</i> of
	(d) 3×10^{-2} M and 4×10^{-13} M		is (<i>pk</i>
60.	If solubility product of $HgSO_4$ is 6.4×10^{-5} , then		(-) = 0
	its solubility is [BHU 2004]		(a) 7.0 (c) 6.0
	(a) 8×10^{-3} mole / litre (b) 6.4×10^{-5} mole / litre	70.	<i>pH</i> of 0.
	(c) $6.4 \times 10^{-3} mole / litre$ (d) $2.8 \times 10^{-6} mole / litre$		It is neu
61.	At 298K a 0.1 M CH_3COOH solution is 1.34%		the acid solution
	ionized. The ionization constant K_a for acetic acid		(a) 4.50
	will be		(c) 7.00
	[AMU 2002; AFMC 2005] (a) 1.82×10^{-5} (b) 18.2×10^{-5}	71.	If 50 ml
	(c) 0.182×10^{-5} (d) None of these		0.5 <i>M HC</i>
62.	Hydrogen ion concentration of an aqueous		$(K_a = 1.8$
	solution is $1 \times 10^{-4} M$. The solution is diluted with		(a) 3.4
	equal volume of water. Hydroxyl ion concentration of the resultant solution in terms of		(c) 5.6
	$mol \ dm^{-3}$ is [KCET 2001]	72.	The Bron $HCO_3^-(aq)$
	(a) 1×10^{-8} (b) 1×10^{-6}		(a) <i>OH</i> ⁻
	(c) 2×10^{-10} (d) 0.5×10^{-10}		
63.	Which one of the following is not a buffer solution		(b) <i>OH</i> ⁻
	(a) $0.8 M H_2 S + 0.8 M KHS$ [AIIMS 2003]		(c) <i>HCO</i>
	+		(d) <i>HCO</i>
	(b) $2MC_6H_5NH_2 + 2MC_6H_5NH_3Br$	73.	A 0.1N s
	(c) $3MH_2CO_3 + 3MKHCO_3$		has a de of OH^- v
C .	(d) $0.05 M KClO_4 + 0.05 M HClO_4$		(a) 10^{-12}
64.	The hydrogen ion concentration of a $0.006 M$		(c) 10^{-9}
	benzoic acid solution is $(K_a = 6 \times 10^{-5})$ [MP PET 1994]	74.	Increasi
	(a) 0.6×10^{-4} (b) 6×10^{-4}		(a) <i>CH</i> ₃
65.	(c) 6×10^{-5} (d) 3.6×10^{-4} Calculate the amount of $(NH_4)_2SO_4$ in grams which		(b) <i>CH</i> ₃
53.	must be added to 500 ml of $0.200 M NH_{\odot}$ to yield a		(c) H_2C_2
	solution with $pH = 9.35$ (K_b for $NH_3 = 1.78 \times 10^{-5}$) [UP	SEAT 2	(d) H_2SC
	$(n_b - 101 - 1.00 + 101 - 1.00 + 101 - 1.00 + 100 - $	JE/11 2	

(a) 10.56 <i>gm</i>	(b) 15 <i>gm</i>
(c) 12.74 gm	(d) 16.25 gm

66. *pH* of a solution produced when an aqueous solution of *pH* 6 is mixed with an equal volume of an aqueous solution of *pH* 3 is about [KCET 2001]
(a) 3.3 (b) 4.3

(c) 4.0 (d) 4.5

7. Calculate the H^+ ion concentration in a 1.00 (*M*)

HCN litre solution ($K_a = 4 \times 10^{-10}$) [Bihar CEE 1995]

(a) 4×10^{-14} mole / litre

(b) 2×10^{-5} mole / litre

(c) 2.5×10^{-5} mole / litre

- (d) None of these
- 68. The number of moles of hydroxide (OH⁻) ion in 0.3 litre of 0.005 M solution of Ba(OH)₂ is[JIPMER 2001]
 (a) 0.0050 (b) 0.0030 (c) 0.0015 (d) 0.0075
- **69.** The *pH* of pure water or neutral solution at $50^{\circ}C$ is $(pK_w = 13.26 = 13.26 \text{ at } 50^{\circ}C)$

	[Pb. PMT 2002; DPMT 2002]
(a) 7.0	(b) 7.13
()	

- (c) 6.0
 (d) 6.63
 70. *pH* of 0.1 *M* solution of a weak acid (*HA*) is 4.50. It is neutralised with *NaOH* solution to decrease the acid content to half *pH* of the resulting solution

 [JIPMER 2002]
 (a) 4.50
 (b) 8.00
 (c) 7.00
 (d) 10.00
- **71.** If 50 ml of 0.2 M KOH is added to 40 ml of 0.5 M HCOOH, the pH of the resulting solution is $(K_a = 1.8 \times 10^{-4})$ [MH CET 2000] (a) 3.4 (b) 7.5
 - (c) 5.6 (d) 3.75

72. The Bronsted acids in the reversible reaction are $HCO_3^-(aq.) + OH^-(aq.) \rightleftharpoons CO_3^{2-}(aq.) + H_2O$ [DPMT 2002]

- (a) OH^- and CO_3^{2-}
- (b) OH^- and H_2O
- (c) HCO_3^- and H_2O
- (d) HCO_3^- and CO_3^{2-}
- **73.** A 0.1*N* solution of an acid at room temperature has a degree of ionisation 0.1. The concentration of OH^- would be [MH CET 1999] (a) $10^{-12}M$ (b) $10^{-11}M$ (c) $10^{-9}M$ (d) $10^{-2}M$

74. Increasing order of acidic character would be[RPMT 1999]
(a) CH₃COOH < H₂SO₄ < H₂CO₃

- (b) $CH_3COOH < H_2CO_3 < H_2SO_4$
- (c) $H_2CO_3 < CH_3COOH < H_2SO_4$

(d)
$$H_2SO_4 < H_2CO_3 < CH_3COOH$$

Get More Learning Materials Here :

CLICK HERE

75.	The correct order of	increasing $[H_3O^+]$ in the
	following aqueous solut	ions is [UPSEAT 2000]
	(a) $0.01 M H_2 S < 0.01 M$	$H_2SO_4 < 0.01 M NaCl$
		< 0.01 M NaNO ₂
	(b) 0.01 <i>M NaCl</i> <0.01 <i>M</i>	$M NaNO_2 < 0.01 M H_2S$
		< 0.01 $M H_2 SO_4$
	(c) 0.01 <i>M NaNO</i> ₂ < 0.01	$M NaCl < 0.01 M H_2S$
		< 0.01 $M H_2 SO_4$
	(d) $0.01 M H_2 S < 0.01 M$	
		$< 0.01 M H_2 SO_4$
76.	,	ter, yields a solution with
	a hydroxyl ion concentr	ation of $0.05 mol \ litre^{-1}$. The
	solution is	
		[CBSE PMT 2000]
	(a) Basic	(b) Acid
	(a) Basic (c) Neutral	
77.	(c) Neutral In the given reaction,	(b) Acid(d) Either (b) or (c)the oxide of sodium is
77.	(c) Neutral In the given reaction,	(b) Acid(d) Either (b) or (c)the oxide of sodium is
77.	(c) Neutral	(b) Acid(d) Either (b) or (c)the oxide of sodium is
77.	(c) Neutral In the given reaction,	(b) Acid(d) Either (b) or (c)the oxide of sodium is
77.	(c) Neutral In the given reaction, $\dots \begin{bmatrix} 4Na + O_2 \rightarrow 2Na_2O\\ Na_2O + H_2O \rightarrow 2NaOH \end{bmatrix}$	(b) Acid (d) Either (b) or (c) the oxide of sodium is [Orissa JEE 2002] (b) Basic
77 . 78.	(c) Neutral In the given reaction, $\dots \begin{bmatrix} 4Na + O_2 \rightarrow 2Na_2O\\ Na_2O + H_2O \rightarrow 2NaOH \end{bmatrix}$ (a) Acidic (c) Amphoteric	(b) Acid (d) Either (b) or (c) the oxide of sodium is [Orissa JEE 2002] (b) Basic
	(c) Neutral In the given reaction, $\dots \begin{bmatrix} 4Na + O_2 \rightarrow 2Na_2O\\ Na_2O + H_2O \rightarrow 2NaOH \end{bmatrix}$ (a) Acidic (c) Amphoteric	 (b) Acid (d) Either (b) or (c) the oxide of sodium is [Orissa JEE 2002] (b) Basic (d) Neutral
	(c) Neutral In the given reaction, $\dots \begin{bmatrix} 4Na + O_2 \rightarrow 2Na_2O\\ Na_2O + H_2O \rightarrow 2NaOH \end{bmatrix}$ (a) Acidic (c) Amphoteric What is the <i>pH</i> of a 1 <i>M</i>	 (b) Acid (d) Either (b) or (c) the oxide of sodium is [Orissa JEE 2002] (b) Basic (d) Neutral CH₃COOH a solution K_a of
	(c) Neutral In the given reaction, $\dots \begin{bmatrix} 4Na + O_2 \rightarrow 2Na_2O \\ Na_2O + H_2O \rightarrow 2NaOH \end{bmatrix}$ (a) Acidic (c) Amphoteric What is the <i>pH</i> of a 1 <i>M</i> acetic acid = 1.8×10^{-5} .	 (b) Acid (d) Either (b) or (c) the oxide of sodium is [Orissa JEE 2002] (b) Basic (d) Neutral

(c) 3.6 (d) 2.4

Get More Learning Materials Here : 💻

Read the assertion and reason carefully to mark the correct option out of the options given below :

- (a) If both assertion and reason are true and the reason is the correct explanation of the assertion.
- (b) If both assertion and reason are true but reason is not the correct explanation of the assertion.
- (c) If assertion is true but reason is false.
- (d) If the assertion and reason both are false.
- (e) If assertion is false but reason is true.
- **1.** Assertion : *p*H of hydrochloric acid solution is less than that of acetic acid solution of the same concentration.
 - Reason : In equimolar solutions, the number of titrable protons present in hydrochloric acid is less than that persent in acetic acid.
- [NDA 1999] 2. Assertion : A ionic product is used fro any types of electrolytes whereas solubility product is applicable only to sparingly soluble salts.
 - Reason : Ionic product is defined at any stage of the raction whereas solubility product is only appicable to the saturation stage.

[AIIMS 2001]

- **3.** Assertion : A solution of *FeCl*₃ in water produce brown precipitate on standing.
 - Reason : Hydrolysis of *FeCl*₃ takes place in water
- **4.** Assertion : $BaCO_3$ is more soluble in HNO_3 than in plain water.
- Reason : Carbonate is a weak base and reacts with the H^+ from the strong acid, casuing the barium salt to dissociate.
- **5.** Assertion : $CHCl_3$ is more acidic than CHF_3 .
- Reason : The conjugate base of $CHCl_3$ is more stable than CHF_3 .
- 6. Assertion : Addition of silver ions to a mixture of aqueous sodium chloride and sodium bromide solution will first precipitate A_gBr rather than A_gCl .
- Reason : K_{sp} of $AgCl < K_{sp}$ of AgBr .[AIIMS 2004] 7. Assertion : The pK_a of acetic acid is lower than that of phenol.
 - Reason : Phenoxide ion is more resonance stabilized. [AIIMS 2004]

8. Assertion : Sb (III) is not precipitated as sulphide when in its alkaline solution H_2S is passed.

Reason : The concentration of S^{2-} ion in alkaline medium is inadequate for precipitation.

[AIIMS 2004] 9. Assertion : Ionic reactions are not instantaneous.

Reason : Oppositely charged ions exert strong forces.

Answers

Electrical conductors, Arrenius theory and Ostwald's dilution law

1	С	2	b	3	b	4	b	5	b
6	а	7	b	8	d	9	а	10	a
11	c	12	d	13	b	14	b	15	d
16	d	17	b	18	b	19	C	20	C
21	а	22	С	23	b	24	d	25	C
26	d	27	а	28	d	29	d	30	С
31	b	32	С	33	С	34	С	35	a
36	С								

Acids and Bases

1	а	2	d	3	а	4	С	5	b
6	d	7	b	8	c	9	b	10	а
11	а	12	С	13	а	14	d	15	d
16	b	17	b	18	d	19	а	20	b
21	d	22	b	23	b	24	С	25	d
26	С	27	С	28	d	29	b	30	b
31	b	32	С	33	d	34	а	35	а
36	а	37	С	38	C	39	С	40	a
41	С	42	d	43	С	44	а	45	а
46	С	47	С	48	d	49	а	50	b
51	b	52	а	53	а	54	а	55	d
56	b	57	ab	58	а	59	С	60	d
61	а	62	b	63	b	64	b	65	а
66	а	67	d	68	а	69	а	70	b
71	b	72	d	73	b	74	d	75	b
76	b	77	а	78	а	79	b	80	а
81	d	82	b	83	b	84	d	85	bd
86	а	87	d	88	а	89	d	90	С
91	а	92	а	93	а	94	d	95	b
96	C	97	b	98	C	99	d	100	C
101	а	102	а	103	C	104	С	105	а
106	a	107	d	108	b	109	С	110	d

Get More Learning Materials Here : 📒

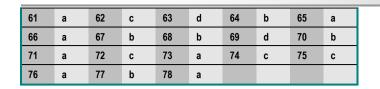
CLICK HERE

111	b	112	C	113	С	114	a	115	С
116	d	117	d	118	C	119	С	120	C
121	а	122	d	123	b	124	а	125	b
126	С	127	С	128	d	129	С	130	b
131	b	132	С	133	а	134	C	135	a
136	С	137	C	138	b	139	b	140	b
141	b	142	а	143	b	144	а	145	a
146	а	147	b	148	b	149	С	150	a
151	С	152	С	153	d	154	С	155	a
156	b	157	а	158	d	159	b	160	d
161	b	162	d	163	C	164	d	165	a

Common ion effect, Isohydric solutions, Solubility product, Ionic product of water and Salt hydrolysis

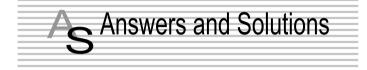
1	b	2	c	3	b	4	b	5	b
6	d	7	с	8	а	9	С	10	а
11	b	12	b	13	а	14	d	15	d
16	b	17	С	18	с	19	d	20	С
21	d	22	d	23	d	24	b	25	а
26	d	27	а	28	d	29	b	30	b
31	а	32	d	33	а	34	С	35	d
36	b	37	b	38	с	39	b	40	а
41	а	42	d	43	b	44	а	45	b
46	d	47	b	48	с	49	С	50	С
51	b	52	d	53	а	54	d	55	С
56	d	57	b	58	с	59	d	60	С
61	b	62	b	63	а	64	bc	65	d
66	а	67	d	68	а	69	d	70	С
71	С	72	d	73	d	74	d	75	а
76	С	77	b	78	d	79	b	80	d
81	С	82	С	83	d	84	С	85	d
86	d	87	b	88	с	89	b	90	а
91	а	92	а	93	С	94	C	95	а
96	d	97	d	98	b	99	b	100	ab
101	d	102	С	103	с	104	а	105	С
106	С	107	С	108	а	109	b	110	b
111	b	112	а	113	а	114	а	115	b
116	a								

Hydrogen ion concentration - *pH* scale and Buffer solution


1	a	2	С	3	d	4	b	5	b
6	d	7	а	8	C	9	b	10	d
11	а	12	d	13	c	14	а	15	b
16	d	17	b	18	С	19	с	20	d
21	b	22	С	23	а	24	d	25	b
26	а	27	а	28	d	29	b	30	b
31	d	32	b	33	а	34	а	35	С
36	С	37	с	38	а	39	а	40	d

41 a 42 a 43 b 44 d 45 b 46 a 47 b 48 a 49 c 50 a 51 a 52 c 53 c 54 c 55 d 56 a 57 c 58 b 59 b 60 c 61 b 62 c 63 b 64 b 65 c 66 a 67 b 68 d 69 a 70 c 71 d 72 a 73 b 74 a 75 b 76 a 77 a 78 c 79 b 80 a 81 b 82 c 83 a 89 a 90 d 91 b 92 c 93 a 94 a 95 c 96 b 77 b 98 <th></th>										
51 a 52 c 53 c 54 c 55 d 56 a 57 c 58 b 59 b 60 c 61 b 62 c 63 b 64 b 65 c 66 a 67 b 68 d 69 a 70 c 71 d 72 a 73 b 74 a 75 b 76 a 77 a 78 c 79 b 80 a 81 b 82 c 83 b 84 b 85 c 86 b 87 a 88 a 89 a 90 d 91 b 92 c 93 a 104 a 105 c 96 b 97 b 98 b 99 b 100 b 101 c 102 c	41	а	42	а	43	b	44	d	45	b
56 a 57 c 58 b 59 b 60 c 61 b 62 c 63 b 64 b 65 c 66 a 67 b 68 d 69 a 70 c 71 d 72 a 73 b 74 a 75 b 76 a 77 a 78 c 79 b 80 a 81 b 82 c 83 b 84 b 85 c 86 b 87 a 88 a 89 a 90 d 91 b 92 c 93 a 94 a 95 c 96 b 97 b 98 b 99 b 100 b 101 c 102 c 113	46	a	47	b	48	а	49	C	50	a
61 b 62 c 63 b 64 b 65 c 66 a 67 b 68 d 69 a 70 c 71 d 72 a 73 b 74 a 75 b 76 a 77 a 78 c 79 b 80 a 81 b 82 c 83 b 84 b 85 c 86 b 87 a 88 a 89 a 90 d 91 b 92 c 93 a 94 a 95 c 96 b 97 b 98 b 99 b 100 b 101 c 102 c 103 a 104 120 c 111 d 112 d 113 b	51	а	52	С	53	C	54	С	55	d
66 a 67 b 68 d 69 a 70 c 71 d 72 a 73 b 74 a 75 b 76 a 77 a 78 c 79 b 80 a 81 b 82 c 83 b 84 b 85 c 86 b 87 a 88 a 89 a 90 d 91 b 92 c 93 a 94 a 95 c 96 b 97 b 98 b 99 b 100 b 101 c 102 c 103 a 104 a 105 c 106 a 107 c 108 c 109 d 120 c 111 d 112 d 113 <td>56</td> <td>а</td> <td>57</td> <td>С</td> <td>58</td> <td>b</td> <td>59</td> <td>b</td> <td>60</td> <td>C</td>	56	а	57	С	58	b	59	b	60	C
71 d 72 a 73 b 74 a 75 b 76 a 77 a 78 c 79 b 80 a 81 b 82 c 83 b 84 b 85 c 86 b 87 a 88 a 89 a 90 d 91 b 92 c 93 a 94 a 95 c 96 b 97 b 98 b 99 b 100 b 101 c 102 c 103 a 104 a 105 c 106 a 107 c 108 c 109 d 110 b 111 d 112 d 113 b 114 a 115 c 116 d 117 b 118 b 119 d 120 c 126 b 127 <th< td=""><td>61</td><td>b</td><td>62</td><td>С</td><td>63</td><td>b</td><td>64</td><td>b</td><td>65</td><td>С</td></th<>	61	b	62	С	63	b	64	b	65	С
76 a 77 a 78 c 79 b 80 a 81 b 82 c 83 b 84 b 85 c 86 b 87 a 88 a 89 a 90 d 91 b 92 c 93 a 94 a 95 c 96 b 97 b 98 b 99 b 100 b 101 c 102 c 103 a 104 a 105 c 106 a 107 c 108 c 109 d 110 b 111 d 112 d 113 b 114 a 115 c 126 b 127 a 128 c 129 b 130 d 131 c 132 d 133 c 134 c 135 a 136 c 137	66	а	67	b	68	d	69	a	70	C
81 b 82 c 83 b 84 b 85 c 86 b 87 a 88 a 89 a 90 d 91 b 92 c 93 a 94 a 95 c 96 b 97 b 98 b 99 b 100 b 101 c 102 c 103 a 104 a 105 c 106 a 107 c 108 c 109 d 110 b 111 d 112 d 113 b 114 a 115 c 116 d 117 b 118 b 119 d 120 c 121 d 122 b 123 c 124 d 125 b 126 b 127 a	71	d	72	а	73	b	74	а	75	b
86 b 87 a 88 a 89 a 90 d 91 b 92 c 93 a 94 a 95 c 96 b 97 b 98 b 99 b 100 b 101 c 102 c 103 a 104 a 105 c 106 a 107 c 108 c 109 d 110 b 111 d 112 d 113 b 114 a 115 c 116 d 117 b 118 b 119 d 120 c 121 d 122 b 123 c 124 d 125 b 126 b 127 a 128 c 139 c 140 b 131 c 137 c <td>76</td> <td>а</td> <td>77</td> <td>а</td> <td>78</td> <td>c</td> <td>79</td> <td>b</td> <td>80</td> <td>a</td>	76	а	77	а	78	c	79	b	80	a
91 b 92 c 93 a 94 a 95 c 96 b 97 b 98 b 99 b 100 b 101 c 102 c 103 a 104 a 105 c 106 a 107 c 108 c 109 d 110 b 111 d 112 d 113 b 114 a 115 c 116 d 117 b 118 b 119 d 120 c 121 d 122 b 123 c 124 d 125 b 126 b 127 a 128 c 130 d 130 d 131 c 132 d 133 c 134 c 135 a 141 b 142	81	b	82	С	83	b	84	b	85	C
96 b 97 b 98 b 99 b 100 b 101 c 102 c 103 a 104 a 105 c 106 a 107 c 108 c 109 d 110 b 111 d 112 d 113 b 114 a 115 c 116 d 117 b 118 b 119 d 120 c 121 d 122 b 123 c 124 d 125 b 126 b 127 a 128 c 129 b 130 d 131 c 132 d 133 c 134 c 135 a 146 d 147 c 138 c 139 c 140 b 146 d 147	86	b	87	а	88	а	89	а	90	d
101 c 102 c 103 a 104 a 105 c 106 a 107 c 108 c 109 d 110 b 111 d 112 d 113 b 114 a 115 c 116 d 117 b 118 b 119 d 120 c 121 d 122 b 123 c 124 d 125 b 126 b 127 a 128 c 129 b 130 d 131 c 132 d 133 c 134 c 135 a 136 c 137 c 138 c 139 c 140 b 141 b 142 a 143 d 144 b 145 b 146 d 147 c 148 b 149 a 150 d 151 b	91	b	92	С	93	а	94	a	95	C
106 a 107 c 108 c 109 d 110 b 111 d 112 d 113 b 114 a 115 c 116 d 117 b 118 b 119 d 120 c 121 d 122 b 123 c 124 d 125 b 126 b 127 a 128 c 129 b 130 d 131 c 132 d 133 c 134 c 135 a 136 c 137 c 138 c 139 c 140 b 141 b 142 a 143 d 144 b 145 b 146 d 147 c 148 b 149 a 150 d 151 b 152 d 153 b 154 b 155 c 156 d	96	b	97	b	98	b	99	b	100	b
111 d 112 d 113 b 114 a 115 c 116 d 117 b 118 b 119 d 120 c 121 d 122 b 123 c 124 d 125 b 126 b 127 a 128 c 129 b 130 d 131 c 132 d 133 c 134 c 135 a 136 c 137 c 138 c 139 c 140 b 141 b 142 a 143 d 144 b 145 b 146 d 147 c 148 b 149 a 150 d 151 b 152 d 153 b 154 b 155 c 156 d 157 c 158 a 159 c 160 d 161 c	101	c	102	С	103	a	104	а	105	C
116 d 117 b 118 b 119 d 120 c 121 d 122 b 123 c 124 d 125 b 126 b 127 a 128 c 129 b 130 d 131 c 132 d 133 c 134 c 135 a 136 c 137 c 138 c 139 c 140 b 141 b 142 a 143 d 144 b 145 b 146 d 147 c 148 b 149 a 150 d 151 b 152 d 153 b 154 b 155 c 156 d 157 c 158 a 159 c 160 d 161 c 162 d 163 b 164 a 165 d 166 a	106	а	107	С	108	с	109	d	110	b
121 d 122 b 123 c 124 d 125 b 126 b 127 a 128 c 129 b 130 d 131 c 132 d 133 c 134 c 135 a 136 c 137 c 138 c 139 c 140 b 141 b 142 a 143 d 144 b 145 b 146 d 147 c 148 b 149 a 150 d 151 b 152 d 153 b 154 b 155 c 156 d 157 c 158 a 159 c 160 d 161 c 162 d 163 b 164 a 165 d 176 c 172 c 173 d 174 b 175 a 176 c	111	d	112	d	113	b	114	а	115	C
126 b 127 a 128 c 129 b 130 d 131 c 132 d 133 c 134 c 135 a 136 c 137 c 138 c 139 c 140 b 141 b 142 a 143 d 144 b 145 b 146 d 147 c 148 b 149 a 150 d 151 b 152 d 153 b 154 b 155 c 156 d 157 c 158 a 159 c 160 d 161 c 162 d 163 b 164 a 165 d 176 c 172 c 173 d 174 b 175 a 176 c 177 a 178 c 179 a 180 b 186 b	116	d	117	b	118	b	119	d	120	с
131 c 132 d 133 c 134 c 135 a 136 c 137 c 138 c 139 c 140 b 141 b 142 a 143 d 144 b 145 b 146 d 147 c 148 b 149 a 150 d 151 b 152 d 153 b 154 b 155 c 156 d 157 c 158 a 159 c 160 d 161 c 162 d 163 b 164 a 165 d 166 a 167 d 168 b 169 c 170 a 171 c 172 c 173 d 174 b 175 a 176 c 177 a 178 c 179 a 180 b 181 c	121	d	122	b	123	с	124	d	125	b
136 c 137 c 138 c 139 c 140 b 141 b 142 a 143 d 144 b 145 b 146 d 147 c 148 b 149 a 150 d 151 b 152 d 153 b 154 b 155 c 156 d 157 c 158 a 159 c 160 d 161 c 162 d 163 b 164 a 165 d 166 a 167 d 168 b 169 c 170 a 171 c 172 c 173 d 174 b 175 a 176 c 177 a 178 c 179 a 180 b 181 c 182 b 183 b 184 b 185 c 186 b	126	b	127	а	128	c	129	b	130	d
141 b 142 a 143 d 144 b 145 b 146 d 147 c 148 b 149 a 150 d 151 b 152 d 153 b 154 b 155 c 156 d 157 c 158 a 159 c 160 d 161 c 162 d 163 b 164 a 165 d 166 a 167 d 168 b 169 c 170 a 171 c 172 c 173 d 174 b 175 a 176 c 177 a 178 c 179 a 180 b 181 c 182 b 183 b 184 b 185 c 186 b 187 b 188 a 189 a 190 b 191 d	131	С	132	d	133	c	134	с	135	а
146 d 147 c 148 b 149 a 150 d 151 b 152 d 153 b 154 b 155 c 156 d 157 c 158 a 159 c 160 d 161 c 162 d 163 b 164 a 165 d 166 a 167 d 168 b 169 c 170 a 171 c 172 c 173 d 174 b 175 a 176 c 177 a 178 c 179 a 180 b 181 c 182 b 183 b 184 b 185 c 186 b 187 b 188 a 189 a 190 b 191 d 192 b 193 b 194 b 195 a 196 b	136	с	137	С	138	с	139	C	140	b
151 b 152 d 153 b 154 b 155 c 156 d 157 c 158 a 159 c 160 d 161 c 162 d 163 b 164 a 165 d 166 a 167 d 168 b 169 c 170 a 171 c 172 c 173 d 174 b 175 a 176 c 177 a 178 c 179 a 180 b 181 c 182 b 183 b 184 b 185 c 186 b 187 b 188 a 189 a 190 b 191 d 192 b 193 b 194 b 195 a 196 b 197 b 198 b 199 a 200 add 201 ac </td <td>141</td> <td>b</td> <td>142</td> <td>а</td> <td>143</td> <td>d</td> <td>144</td> <td>b</td> <td>145</td> <td>b</td>	141	b	142	а	143	d	144	b	145	b
156 d 157 c 158 a 159 c 160 d 161 c 162 d 163 b 164 a 165 d 166 a 167 d 168 b 169 c 170 a 176 c 172 c 173 d 174 b 175 a 176 c 177 a 178 c 179 a 180 b 181 c 182 b 183 b 184 b 185 c 186 b 187 b 188 a 189 a 190 b 191 d 192 b 193 b 194 b 195 a 196 b 197 b 198 b 199 a 200 add 201 ac 202 abc 203 c 204 c 205 b	146	d	147	С	148	b	149	а	150	d
161 c 162 d 163 b 164 a 165 d 166 a 167 d 168 b 169 c 170 a 171 c 172 c 173 d 174 b 175 a 176 c 177 a 178 c 179 a 180 b 181 c 182 b 183 b 184 b 185 c 186 b 187 b 188 a 189 a 190 b 191 d 192 b 193 b 194 b 195 a 196 b 197 b 198 b 199 a 200 add 201 ac 202 abc 203 c 204 c 205 b	151	b	152	d	153	b	154	b	155	с
166 a 167 d 168 b 169 c 170 a 171 c 172 c 173 d 174 b 175 a 176 c 177 a 178 c 179 a 180 b 181 c 182 b 183 b 184 b 185 c 186 b 187 b 188 a 189 a 190 b 191 d 192 b 193 b 194 b 195 a 196 b 197 b 198 b 199 a 200 ad 201 ac 202 abc 203 c 204 c 205 b	156	d	157	С	158	а	159	C	160	d
171 c 172 c 173 d 174 b 175 a 176 c 177 a 178 c 179 a 180 b 181 c 182 b 183 b 184 b 185 c 186 b 187 b 188 a 189 a 190 b 191 d 192 b 193 b 194 b 195 a 196 b 197 b 198 b 199 a 200 ad 201 ac 202 abc 203 c 204 c 205 b	161	С	162	d	163	b	164	а	165	d
176 c 177 a 178 c 179 a 180 b 181 c 182 b 183 b 184 b 185 c 186 b 187 b 188 a 189 a 190 b 191 d 192 b 193 b 194 b 195 a 196 b 197 b 198 b 199 a 200 ad 201 ac 202 abc 203 c 204 c 205 b	166	a	167	d	168	b	169	C	170	a
181 c 182 b 183 b 184 b 185 c 186 b 187 b 188 a 189 a 190 b 191 d 192 b 193 b 194 b 195 a 196 b 197 b 198 b 199 a 200 ad 201 ac 202 abc 203 c 204 c 205 b	171	c	172	C	173	d	174	b	175	a
186 b 187 b 188 a 189 a 190 b 191 d 192 b 193 b 194 b 195 a 196 b 197 b 198 b 199 a 200 add 201 ac 202 a bc 203 c 204 c 205 b	176	c	177	a	178	C	179	a	180	b
191 d 192 b 193 b 194 b 195 a 196 b 197 b 198 b 199 a 200 ad 201 ac 202 a bc 203 c 204 c 205 b	181	C	182	b	183	b	184	b	185	C
196 b 197 b 198 b 199 a 200 ad 201 ac 202 a bc 203 c 204 c 205 b	186	b	187	b	188	а	189	a	190	b
201 ac 202 a bc 203 c 204 c 205 b	191	d	192	b	193	b	194	b	195	а
	196	b	197	b	198	b	199	а	200	ad
206 b	201	ac	202	a bc	203	C	204	C	205	b
	206	b								

Critical Thinking Questions


1	b	2	а	3	b	4	a	5	d
6	а	7	C	8	а	9	а	10	а
11	b	12	d	13	с	14	d	15	С
16	d	17	d	18	b	19	b	20	d
21	а	22	b	23	а	24	b	25	а
26	с	27	d	28	d	29	b	30	d
31	b	32	а	33	с	34	a	35	а
36	b	37	C	38	b	39	a	40	b
41	а	42	a	43	а	44	a	45	a
46	с	47	b	48	b	49	b	50	С
51	d	52	C	53	b	54	с	55	a
56	d	57	d	58	с	59	a	60	а

Assertion & Reason

1	С	2	b	3	а	4	а	5	а
6	C	7	с	8	а	9	е		

Electrical conductors, Arrhenius theory and Ostwald's dilution law

1. (c) $C_{12}H_{22}O_{11}$ is a sugar and non-electrolyte.

2. (b) It is a weak electrolyte since it is slightly ionized.

- 3. (b) It is a weak electrolyte since slightly ionized.
- (b) Because the degree of dissociation is inversely proportional to the concentration of the electrolyte.
- 5. (b) Electrolytes are those substances which on dissolving in water give ions.

6. (a)
$$K = \frac{\alpha^2 C}{1 - \alpha}; \alpha = \frac{0.01}{100} \approx 1 \therefore K = \alpha^2 C = \left[\frac{0.01}{100}\right]^2 \times 1$$

= 1×10^{-8} .

7. (b) As *NaCl* ionises completely to yield free ions.

(d)
$$CH_3COONa \Rightarrow CH_3COO^- + H_3COO^- + H_3O \Rightarrow H^+ + OH^-$$

 $CH_3COOH + NaOH$

8.

- **9.** (a) *NaCl* , being a salt, is a strong electrolyte.
- **10.** (a) We can determine by measurement of very dilute *HF* solutions.
- 11. (c) According to the Ostwald's dilution formula $\alpha^2 = \frac{K(1-\alpha)}{C}$. But for weak electrolytes α is very small. So that $(1-\alpha)$ can be neglected. So that $\alpha = \sqrt{\frac{K_a}{C}}$.

that
$$\alpha = \sqrt{\frac{K_a}{C}}$$
.

- **12.** (d) Arrhenius proposed the theory of ionisation.
- 13. (b) higher the dielectric constant of a solvent more of its ionising power.
- 14. (b) $\alpha \propto \text{dilution of solution}$.
- **15.** (d) Generally ionic compound are conduct electricity in fused state.
- 16. (d) According to Ostwald's dilution law because degree of ionization is directly proportional to the dilution.

Ionic Equilibrium 381

- 17. (b) The degree of ionisation of a solute depends upon its nature, concentration, and temperature.
- **18.** (b) Mathematical form of Ostwald's dilution law.
- 19. (c) It is a weak electrolyte because it's ionization is very less.
- **20.** (c) When we add NH_4OH in NH_4Cl solution ionization of NH_4OH is decreased due to common ion effect.

21. (a)

$$BaCl_{2} \Rightarrow Ba^{2+} + 2Cl^{-}$$
Initially
1 0 0
After dissociation $a - \alpha$ α 2α
Total = $1 - \alpha + \alpha + 2\alpha = 1 + 2\alpha$
 $\alpha = \frac{1.98 - 1}{\alpha} = \frac{0.98}{\alpha} = 0.49$
for a mole $\alpha = 0.49$
For 0.01 mole $\alpha = \frac{0.49}{0.01} = 49$

- 22. (c) It is an ionic salt.
- **23.** (b) Due to common ion effect of H^+ .
- 24. (d) Current does not affect the degree of ionization.
- **25.** (c) Polar solvent facilitate ionisation of strong electrolytes due to dipole-ion attraction.

26. (d)
$$HA \Rightarrow H^+ + A^-$$

 $K = Ca^2 = 0.1 \times (10^{-4})^2 = 10^{-9}$

28. (d) Degree of dissociation α = ?

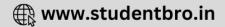
Normality of solution = 0.1 $N = \frac{1}{10} N$

Volume = 10 *litre*
Dissociation constant
$$K = 1 \times 10^{-5}$$

$$K = \frac{\alpha^2}{V}$$
; $\alpha = \sqrt{KV} = \sqrt{1 \times 10^{-5} \times 10}$; $\alpha = 1 \times 10^{-2}$

- **29.** (d) $M_gCl_2 = M_g^{++} + 2Cl^-$ in aqueous solution it is dissociated into ions.
- **30.** (c) Ostwald's dilution formula is $\alpha^2 = K(1-\alpha)/C$ but for weak electrolyte α is very small. So that $(1-\alpha)$ is neglected for weak electrolytes. So for weak electrolyte the dilution formula is $\alpha = \sqrt{\frac{K}{C}}$.

31. (b)
$$K_a = C\alpha^2 = 0.2 \times \left(\frac{32}{100}\right)^2 = 2.048 \times 10^{-4}$$


2. (c)
$$H_2SO_4 \rightleftharpoons H^+ + H^-SO_4 \rightleftharpoons H^+ + SO_4^{--}$$

Because of it is completely ionised

33. (c) Colour of electrolyte depends on the nature of both ions.

e.g. $CuSO_4$ is blue because Cu^{2+} ions are blue.

Get More Learning Materials Here :

CLICK HERE

- 34. (c) Ionisation depends upon dilution, when dilution increases then ionisation is also increased.
- **35.** (a) More is K_a , lesser is $pK_a(pK_a = -\log K_a)$ more is acidic strength.

Acids and Bases

1. (a) *CO* doesn't have a vacant *d*-orbital.

2. (d) $HClO_4 + H_2O = H_3O^+ + ClO_4^-$ Conjugate acid and base pair

3. (a) $FeCl_3 + 3H_2O \Rightarrow Fe(OH)_3 + 3HCl$. Strong acid and weak base.

4. (c) $Na_2CO_3 + 2H_2O \Rightarrow 2NaOH + H_2CO_3$

 (b) Those substance accept the proton are called Bronsted base and which is donate the proton are called Bronsted acid.

 $HCO_3^- + H^+ \Rightarrow H_2CO_3$ Bronsted base.

 $HCO_3^- \Rightarrow H^+ + CO_3^{--}$ Bronsted acid.

- **7.** (b) The value of pK_a for strong acid is less.
- **8.** (c) Because it is a salt of strong base and weak acid.
- **9.** (b) Because it is conjugate base of weak acid.

 $CH_3COOH \Rightarrow CH_3COO^- + H^+$.

- 11. (a) Those compound which accept H⁺ is called bronstad base NO₃⁻ accept H⁺ and form HNO₃. So it is a base.
- 13. (a) Larger the size of halogen atom less is the back donation of electrons into empty 2p orbital of B.
- **14.** (d) $H_2O + NH_3 \Rightarrow NH_4^+ + OH^-$

16. (b)
$$NH_2^- \Rightarrow NH^{-2} + H^+$$

Conjugate acid, base pair.

17. (b) Those substances which lose proton are called acid.

e.g. strong acid have a strong tendency to donate a proton.

- **18.** (d) Electron donating species called nucleophile. NH_3 have a lone pair of electron.
- **19.** (a) H_2O acts as acid as it provides H^+ to NH_3 .
- **20.** (b) $CH_3COOH + HF \Rightarrow CH_3COOH_2^+ + F^-$. HF gives H^+ to the CH_3COOH . So it is a conjugate base of HF.
- **22.** (b) $Ba(NO_3)_2$ does not undergo hydrolysis.
- **23.** (b) H_2SO_4 is a mineral acid.

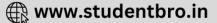
- **24.** (c) Because it is a electron pair acceptor it's central atom have a vacant *d*-orbital.
- **25.** (d) $HClO_4$ is a acid and their conjugate base is ClO_4^- .
- **26.** (c) It is completely ionised because their ionization is very high.

27. (c) $NaHCO_3$ in water is alkaline in nature due to hydrolysis of HCO_3^- ion. $NaCO_3 \Rightarrow Na^+ + HCO_3^-$

- **28.** (d) In this reaction H_2O acts as a acid.
- **29.** (b) The basic character of hydride decreases down the group.
- **30.** (b) Its ionization is very less.
- **32.** (c) Hydrolysis of Cu^{2+} produces H^+ ions in solution.

 $Cu^{2+} + 2H_2O \rightarrow Cu(OH)_2 + 2H^+$

- **33.** (d) Both possess the tendancy to accept proton.
- **34.** (a) *HF* does not give proton easily.
- **35.** (a) In weak electrolyte the degree of dissociation is very small. So it increases with increasing dilution.
- **36.** (a) Because it is a electron pair acceptor.


37. (c)
$$H_3PO_4 \xleftarrow{\text{I step}} H^+ + H_2PO_4^-$$

 $H_2PO_4^- \xleftarrow{\text{II step}} H^+ + HPO_4^{--}$
 $HPO_4^- \xleftarrow{\text{III step}} H^+ + PO_4^{---}$

- **38.** (c) Na_2HPO_4 on hydrolysis of HPO_4^{2-} ion produces free OH^- ion in solution.
- **39.** (c) $H_2SO_4 \Rightarrow H^+ + HSO_4^-$.
- **40.** (a) $Fe^{3+} + 3H_2O \rightarrow Fe(OH)_3 + 3H^+$
- **41.** (c) $H_2 P O_4^- \rightleftharpoons H^+ + H P O_4^{2^-}$ action.
- **42.** (d) $H^+ + OH^- \Rightarrow H_2O$, it is a neutralization reaction.
- **43.** (c) It is a conjugate base of the strong acid.
- **44.** (a) Because those acid have higher pK_a value are weak acid.
- **45.** (a) Conjugate acid is obtained from the base by gain of H^+ .
- **46.** (c) CH_3COOH is weak acid shows dissociation equilibrium as $CH_3COOH \Rightarrow CH_3COO^- + H^+$

47. (c)
$$pK_a = \log_{10} \frac{1}{K_a}$$

- **48.** (d) A weak acid and strong base.
- **49.** (a) In NaH_2PO_2 both hydrogen are bonded with 'P ,' so it is not replaceable.
- **50.** (b) Aqueous solution of Na_2CO_3 is alkaline due to hydrolysis of CO_3^{--} .

51. (b) Because they give CO_3^{--} in solution.

52. (a) M.eq. of 0.2*M* $H_2SO_4 = \frac{2 \times 0.2M}{1000} \times 100 = 0.04$ *m/l*

> M.eq. of .2*M* NaOH = $\frac{0.2}{1000} \times 100 = 0.02 \ m/l$ left [*H*⁺] = .04 - .02 = .02 . Total volume = 200 = $\frac{.02}{200} = .0001 = 10^{-4} M$ pH = 4 .

- **53.** (a) H_3BO_3 is a weak monobasic acid it does not act as a H^+ donor but behaves as a Lewis acid.
- 54. (a) Because SnCl₂ is a electron acceptor according to Lewis concept.
- **55.** (d) *ROH* is a Lewis base because it has an lone pair of electron.
- **56.** (b) $H_2SO_4 + 2H_2O \approx 2H_3O^+ + SO_4^{--}$

 $NaOH \Rightarrow Na^+ + OH^-$ 1 mole of H_2SO_4 acid gives 2 moles of H_3O^+ ions. So 2 moles of OH^- are required for complete neutralization.

57. (ab) Diprotic solvents give $2H^+$ ions or OH^- ions.

58. (a) $N_{NaOH} = 1 \times 1 = 1N$

 $N_{H_2SO_4} = 2 \times 10 = 20 N$

M.eq. of $NaOH = 1 \times 100 = 100$

M.eq. of $H_2SO4 = 20 \times 10 = 200$

Thus M.eq. of acid are left and therefore pH < 7, so the resulting mixture will be acidic.

- **60.** (d) PH_3 is a Lewis base.
- **61.** (a) Because of CH_3COONa is a salt of weak acid and strong base.
- **62.** (b) Acid $\xrightarrow{-H^+}$ conjugate base. Base $\xrightarrow{+H^+}$ conjugate acid.
- **63.** (b) $HCl \rightarrow Cl^{-}_{Base}$
- **65.** (a) $HClO_4 > H_2SO_4 > HCl > HNO_3$. Aciedic character decreases
- **66.** (a) Those substances which accept the H^+ are called conjugate base.
- **67.** (d) NH_3 is a Lewis base, which donate a lone pair of electron.
- **69.** (a) $FeCl_3 + 3H_2O \Rightarrow Fe(OH)_3 + 3HCl$. Strong acid have less than 7 *pH*.
- **70.** (b) It donates their e^- pair.
- **71.** (b) The strength of the acid will depend upon the proton donation.

73. (b) Because it is a salt of strong acid and strong base.

 $H^{+}_{(aq)} + Cl^{-}_{(aq)} + Na^{+}_{(aq)} + OH^{-}_{(aq)} \rightleftharpoons$

 $H_2 O_{(1)} + Na^+_{(aq)} + Cl^-$

74. (d) CCl_4 is not a Lewis or bronsted acid. It does not contain H^+ .

75. (b)
$$NH_4Cl + H_2O \Rightarrow NH_4OH + HCl_{Weak base} + HCl_{Strong acid}$$
. So it is

acidic in nature.

- **76.** (b) Cu(II) complexes are blue. The four water molecules are attached with secondary valencies of the metal atom e.g. $[Cu(H_2O)_4]SO_4 \cdot H_2O$.
- 77. (a) The species which can accept as well as donate H^+ can act both as an acid and a base. $HSO_4^- + H^+ \Rightarrow H_2SO_4$ $HSO_4^- \Rightarrow SO_4^{2-} + H^+$ acid
- **78.** (a) NH_4^+ is the weakest acid. So its conjugate base is strongest.
- **79.** (b) Ag^+ is an electron deficient compound and hence is a Lewis acid.

80. (a)
$$H_3 PO_4 = H^+ + H_2 PO_4^-$$

Conjugate acid

81. (d)
$$HS_2O_8^- \rightleftharpoons H^+ + S_2O_8^-$$

Conjugate acid Conjugate base

- **82.** (b) PH_3 donates electron pair to BCl_3 .
- **83.** (b) The conjugate base of weak acid is a strong base.
- **84.** (d) $OH^- \rightarrow O^{2-} + H^+$ Conjugate base of OH^-
- **85.** (bd) Presence of lone pair of electron and they donate two electron pairs.
- **86.** (a) On increasing oxidation number Acidic strength increases.
- **87.** (d) H_3PO_4 is shows +5 maximum oxidation state.
- **88.** (a) $C_2H_5^-$ is a strongest base.

CLICK HERE

≫

- 89. (d) NaOCl is a mixture of strong base and weak acid.
- **90.** (c) NH_4OH gives minimum OH^- ion. So it is a weak base.
- **91.** (a) Solution become acidic and methyl orange act on acidic *pH*.
- **92.** (a) Larger is bond length, more is acidic nature (for halogen acids). *HF* bond length is small.
- **93.** (a) *HCl* is accepting proton in *HF* medium and acts as weak base.
- **95.** (b) For oxoacids of the same element, the acidic strength increases with increase in the oxidation number of that element.

🕀 www.studentbro.in

 $H^{+1}_{ClO} < H^{+3}_{ClO_2} < H^{+5}_{ClO_3} < H^{+7}_{ClO_4}$

- **96.** (c) Because their conjugate base and conjugate acids are strong.
- **97.** (b) *HCl* is a strong acid and their conjugate base is a very weak base.
- **100.** (c) $NH_3 \Rightarrow NH_2^- + H^+$
- **101.** (a) $H_2SO_4 \Rightarrow H^+ + HSO_4^- \Rightarrow H^+ + SO_4^{--}$

 HSO_4^- is conjugate base. But it is also an acid because it lose H^+ .

- **102.** (a) BF_3 is a Lewis acid because 'B' has incomplete octet.
- **104.** (c) H_3O^+ , however it exists as $H_9O_4^+$.
- **105.** (a) $Al_2(SO_4)_3$ is a salt of weak base $Al_2(OH)_3$ and strong acid H_2SO_4 .
- **106.** (a) Al^{+++} of $AlCl_3$ undergoes hydrolysis.
- **107.** (d) $H_2SO_4 = H^+ + HSO_4^-$
- **109.** (c) Conjugate base of H_2SO_4 is HSO_4^- .
- 110. (d) Presence of lone pair.
- **111.** (b) According to Bronsted principle HNO_3 is acid they give H^+ in aqueous solution and form NO_3^- .
- **112.** (c) $H_2O + H_2O \Rightarrow H_3O^+ + OH^-$.
- **113.** (c) NH_4^+ is a conjugate acid;

$$NH_4^+ \Rightarrow NH_3 + H$$

- **114.** (a) $AlCl_3 + 3H_2O \Rightarrow Al(OH)_3 + 3HCl_{Stron acid}$
- **116.** (d) *HCl* is a strong acid its conjugate base means Cl^{-} is a weak base.
- **117.** (d) Hydrazoic acid (HN_3) is a Lewis acid.
- **118.** (c) Smaller the pK_a value than. Stronger the acid.
- **120.** (c) BF_3 is acidic because due to Lewis concept it accept a lone pair of electron.
- **122.** (d) Because it is a weak electrolyte.
- **126.** (c) $AlCl_3$ and SO_2 both are example of Lewis theory.
- **127.** (c) $Na_2CO_3 + 2H_2O = 2NaOH + H_2CO_3$. It is a strong base and weak acid so it is a basic.

129. (c)
$$H_2O + NH_3 = NH_4^+ + OH^-$$
.

In this reaction H_2O acts as acid because it donate a proton.

130. (b)
$$H_2SO_4 + H_2O \Rightarrow H_3O^+ + HSO_4^-$$

Conjugate acid and base

131. (b) $Al_2(SO_4)_3 = 2Al^{3+} + 3SO_4^{2-}$

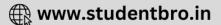
$$Al(OH)_3 + H_2SO_4$$

Weak base Strong acid

132. (c) $NaOH + HCl \xrightarrow{\text{Neutralization}}_{\text{Reaction}} NaCl + H_2O$

- **133.** (a) Conjugate acid is obtained from the base by gain of H^+ .
- **134.** (c) *KCl* is a ionic compound .
- **135.** (a) $H_3BO_3 + H_2O = [B(OH)_4]^- + H^+$

 H_3BO_3 is a weak monobasic acid if does not act as a H^+ donor but behaves as a Lewis acid.


- **136.** (c) Because it is not accept the proton.
- **137.** (c) NH_4Cl is a salt of weak base (NH_4OH) and strong acid (HCl).
- **138.** (b) Because it accept electron pair from the PH_3

139. (b)
$$NH_4^+ \rightleftharpoons NH_3 + H^+$$

- 141. (b) Hydrolysis of Fe^{3+} $Fe^{3+} + 3H_2O \rightarrow Fe(OH)_3 + 3H^+$
- 142. (a) According to the Lewis concept.
- **143.** (b) Conjugate base is obtained from the acid by loss of H^+ .
- **144.** (a) BF_3 accept electron pair from NH_3 so it is Lewis acid.
- 145. (a) CH_4 has almost no acidic nature and thus CH_3^- is strongest base.
- **146.** (a) $CuSO_4$ is a salt of weak base, $(Cu(OH)_2)$ and strong acid (H_2SO_4) .
- **147.** (b) Weak acid consists of highest pK_a value and strongest acid consist of less pK_a value.
- **149.** (c) Because it gain and also lose the proton $H_2O + H_2O = H_3O^+ + OH^-$
- **150.** (a) $H_2O + H_2O \Rightarrow H_3O^+ + OH^-$
- **151.** (c) $HBr + H_2 O \Rightarrow H_3 O^+ + Br^-$
- **152.** (c) Because both are strong acid and strong base.
- **153.** (d) $LiAlH_4$ is a nucleophilic and capable of donating electron pair, thus acts as a Lewis base.

154. (c) The solvent which neither accept proton nor donates.

- **155.** (a) Because of F^- is a highly electronegative. So it is easily lose the electron and reaction occur rapidly.
- **156.** (b) Strong acid can be used titrate both strong and weak base.
- **159.** (b) For a weak acid value of pKa will be vary high but in case of strong acid value of pKa will be vary low.
- **160.** (d) Boron halides behave as Lewis acid because of their electron deficient nature *eg.*, as

- B_{C} (Deficiency of two electron for inert configuration)
- **161.** (b) Gaseous *HCl* does not give H^+ but liquid *HCl* gives H^+ in aquous solution there for gaseous *HCl* is not a Arrhenius acid due to covalent bonding in gaseous condition.

162. (d) $H_2 O \rightarrow H^+ + OH^-$ [Acid due to donation of Acid

proton]

 $H_2O^+ H^+ \rightarrow H_3O^+$ [Basic due to gaining of $_{\rm Base}$

proton]

3.

163. (c) F⁻ strongest conjugate base due to it smallest size in a group and gain proton due to most electronegative capacity.

 $H^+ + F^- \rightarrow HF$

164. (d)
$$H_2PO_4^- \rightarrow H^+ + HPO_4^{2-}$$

Conjugate acid Conjugate bas

165. (a) $HSO_4^- \rightarrow H^+ + SO_4^{2-}$ Conjugate acid Conjugate base

Common ion effect, Isohydric solutions, Solubility product, Ionic product of water and Salt hydrolysis

1. (b) Solubility of $Al_2(SO_4)_3$

$$\begin{aligned} Al_2(SO_4)_3 &\rightleftharpoons 2Al^{+++} + 3SO_4^{--} \\ K_{sp} &= [Al^{3+}]^2 [SO_4^{2-}]^3 \end{aligned}$$

2. (c) Due to common ion effect.

(b)
$$MX_2 \rightleftharpoons M_S^{2+} + \frac{2X}{2S}^{-}$$

 $K_{sp} = (2S)^2(S) = 4S^3$
 $\implies S = 2\sqrt[3]{\frac{K_{sp}}{4}} = \sqrt[3]{\frac{4 \times 10^{-12}}{4}} = 1.0 \times 10^{-4} M.$

5. (b)
$$MX_2 \rightleftharpoons M_{(S)}^+ + 2X_{(2S)^2}^-$$
; $K_{sp} = 4S^3$

$$S = \sqrt[3]{\frac{1 \times 10}{4}} = \sqrt[3]{\frac{1 \times 10}{4}} = 1.35 \times 10^{-4}$$

8. (a) $Mg(OH)_2 = Mg^{++} + 2OH^{-}_{(2X)^2}$

$$K_{sp} = 4X^{5}$$

9. (c)
$$BaSO_{4} \approx Ba^{++} + SO_{4}^{--}$$

 $(S)_{0.01} \qquad (S)_{5}^{(S)}$
 $K_{sp} = S^{2} = S \times S = 0.01 \times S$
 $S_{(SO_{4}^{-})} = \frac{K_{sp}}{S_{(Ba^{++})}} = \frac{1 \times 10^{-9}}{0.01} = 10^{-7} mole/litre$

10. (a)
$$AB_2 \rightleftharpoons A_{1\times 10^{-5}}^+ + 2B_{2\times 10^{-5}}^-$$

 $K_{sp} = [1 \times 10^{-5}] [2 \times 10^{-5}]^2 = 4 \times 10^{-15}$

- **11.** (b) $CaF_2 \approx Ca^{++} + 2F^{-}_{(S)}$; $K_{sp} = 4S^3$
- **12.** (b) Due to common ion effect.

13. (a)
$$Ag_2CrO_4 \Rightarrow [2Ag^+] + [CrO_4^{--}]$$

Hence $K_{sp} = [Ag^+]^2 [CrO_4^{--}]$

14. (d) K_{sp} for $CaF_2 = 4s^3 = 4 \times [2 \times 10^{-4}]^3 = 3.2 \times 10^{-11}$.

- **15.** (d) The concentration of S^{2-} ions in group II is lowered by maintaining acidic medium in the presence of NH_4Cl . The ionization of H_2S is supressed due to common ion effect. So the ionic product is less than solubility product.
- **16.** (b) NH_4Cl is hydrolysed and give $[H^+]$

 $NH_4Cl + H.OH \Rightarrow NH_4OH + HCl$

 $NH_4^+ + H.OH \Rightarrow NH_4OH + H^+$

- **17.** (c) $FeCl_3$ is a salt of weak base $(Fe(OH)_3)$ and strong acid (HCl).
- (c) For the precipitation of an electrolyte, it is necessary that the ionic product must exceed its solubility product.

19. (d)
$$K_{sp} = [Ag^+]^2 [Cro_4^{--}] = [2S]^2 [0.01]$$

$$= 4S^{2}[0.01] = 4[2 \times 10^{-8}]^{2} \times 0.01 = 16 \times 10^{-18}$$

- **20.** (c) Complex salts contain two different metallic elements but give test for only one of them. *e.g.* $K_4 Fe(CN)_6$ does not give test for Fe^{3+} ions.
- **21.** (d) $10^{-3} N$ KOH will give $[OH^{-}] = 10^{-2} M$ pOH = 2 $\therefore pH + pOH = 14$, pH = 14 - 2 = 12
- **22.** (d) It is $FeSO_4(NH_4)_2SO_4 \cdot 10H_2O$.
- **23.** (d) Salt of a strong base with a weak acid.
- **24.** (b) NH_4CN is a salt of weak acid and weak base and thus for it
- **25.** (a) Because it is a salt of strong base with a weak acid.
- 26. (d) Because CCl₄ is a organic solvent and AgNO₃ is insoluble in organic solvent.
- **27.** (a) $SnS_2 \Rightarrow Sn^{4+} + 2S^{2-}$

$$\therefore K_{sp} = [Sn^{4+}] [S^{2-}]^2$$

- (d) It does not dissociate much or its ionization is very less.
- **29.** (b) $NaHCO_3$ has one replaceable hydrogen.
- **30.** (b) $CaOCl_2$ has two anions Cl^- and OCl^- along with Ca^{2+} ions.

🕀 www.studentbro.in

31. (a)
$$K_{sp} = 4S^3$$
, $S^3 = \frac{4 \times 10^{-9}}{4} = 10^{-9}$
 $\therefore S = 10^{-3} M$.

- **32.** (d) $Be(OH)_2$ has lowest solubility and hence lowest solubility product.
- **33.** (a) Because it <u>is a salt</u> of strong acid and strong base.

34. (c)
$$NH_4OH \Rightarrow NH_4^+ + OH^-$$

 $NH_4Cl \Rightarrow NH_4^+ + Cl^-$
Common ion

- 35. (d) It is a less ionic, so that least soluble in water.
- **36.** (b) *pH* of 9 means the salt solution should be fairly basic.

37. (b)
$$CH_3COOH \Rightarrow CH_3COO^- + H^+$$

On adding CH_3COONa , $[H^+]$ decreases.

- **38.** (c) 0.01 *M* $CaCl_2$ gives maximum Cl^- ions to keep K_{sp} of *AgCl* constant, decrease in $[Ag^+]$ will be maximum.
- **39.** (b) Due to the common ion effect.
- **40.** (a) $K_{sp} = 4s^3$

$$S = \sqrt[3]{\frac{K_{sp}}{4}} = \sqrt[3]{\frac{1.0 \times 10^{-6}}{4}} = 6.3 \times 10^{-3} .$$

- **42.** (d) K_w increases with increase in temperature.
- **43.** (b) It contains two cations and one anion.
- **44.** (a) $HgSO_4$ of $K_{sp} = S^2$

$$S = \sqrt{K_{sp}}$$
; $S = \sqrt{6.4 \times 10^{-5}}$; $S = 8 \times 10^{-3} m/l$.

45. (b) The solubility of $BaSO_4$ in *g*/litre is given 2.33×10^{-3}

:: in mole/litre.
$$n = \frac{W}{m.wt} = 1 \times 10^{-5} = \frac{2.33 \times 10^{-3}}{233}$$

Because BaSO₄ is a compound

$$K_{sp} = S^2 = [1 \times 10^{-5}]^2 = 1 \times 10^{-10}$$

46. (d)
$$AgCl = Ag^{+} + Cl^{-}_{a}$$

 $NaCl = Na^{+} + Cl^{-}_{0.02}$
 $K_{sp} AgCl = 1.20 \times 10^{-10}$
 $K_{sp} AgCl = [Ag^{+}][Cl^{-}] = a \times [a + 0.2] = a^{2} + 0.2a$
 a^{2} is a very small so it is a neglected.
 $K_{sp} AgCl = 0.2a$
 $1.20 \times 10^{-10} = 0.2a$
 $a = \frac{1.20 \times 10^{-10}}{a} = 6 \times 10^{-10}$ mole

47. (b) Solubility is decreased due to common ion effect.

$$AgI \rightleftharpoons Ag^{+} + \begin{bmatrix} I^{-} \\ I^{-} \end{bmatrix}$$

$$NaI \rightleftharpoons Na^{+} + \begin{bmatrix} I^{-} \\ I^{-} \end{bmatrix}$$

$$Common ion$$

$$K_{sp} \text{ of } BaSO_{4} = 1.5 \times 10^{-9} \text{ ; } Ba^{++} = 0.01M$$

$$SO_4^{--} = \frac{1.5 \times 10^{-9}}{0.01} = 1.5 \times 10^{-7}$$

48. (

50.

49. (c)
$$AgCrO_4 \approx 2Ag^+ + CrO_4^-$$

 $_{(2S)^2} + S^-$
 $K_{sp} = 4S^3$ given $2S = 1.5 \times 10^{-4}$
 $\therefore K_{sp} = (2S)^2 \times S$
 $= (1.5 \times 10^{-4})^2 \times \left(\frac{1.5 \times 10^{-4}}{2}\right) = 1.6875 \times 10^{-12}$

(c)
$$PbCl_{2} = Pb_{S}^{2+} + 2Cl_{S}^{-}$$

 $K_{sp} \text{ of } PbCl_{2} = [Pb^{2+}] \times [Cl^{-}]^{2} \text{ ; } K_{sp} = S \times (2S)^{2}$
 $K_{sp} = S \times 4S^{2} = 4S^{3} \text{ ; } S^{3} = \frac{K_{sp}}{4} \text{ ; } S = \sqrt[3]{\frac{K_{sp}}{4}}$

51. (b)
$$AgCl \Rightarrow [Ag^+][Cl^-]$$
; $K_{sp} = S \times S$; $K_{sp} = S^2$
 $S = \sqrt{K_{sp}} = \sqrt{1.44 \times 10^{-4}} = 1.20 \times 10^{-2} M.$

52. (d) By formula $BA_2 \rightarrow B^+ + 2A^-$

$$K_{sp} = 4x^3$$

53. (a)
$$AgCrO_4 \rightarrow 2Ag^+ + CrO_4^{--}$$

 $K_{sp} = (2S)^2 S = 4S^3$
 $S = \left(\frac{K_{sp}}{4}\right)^{\frac{1}{3}} = \left(\frac{32 \times 10^{-12}}{4}\right)^{\frac{1}{3}} = 2 \times 10^{-4} M.$

- 54. (d) Common ion effect is noticed only for weak electrolyte dissociation. H_2SO_4 is strong electrolyte.
- **55.** (c) When we added barium ion in chromate ion solution we obtained yellow ppt of *BaCrO*₄.

$$BaCl_{2} + K_{2}CrO_{4} \rightarrow BaCrO_{4} \downarrow + 2KCl$$

Yellow ppt.

56. (d) *AB is a* binary electrolyte.

$$S = \sqrt{K_{sp}} = \sqrt{1.21 \times 10^{-6}} = 1.1 \times 10^{-3} M$$

- 57. (b) Precipitation occurs when ionic product > solubility.
- **58.** (c) For a binary electrolyte, so that

$$K_{sp} = S \times S = S^2$$
$$S = \sqrt{K_{sp}} .$$

≫

CLICK HERE

61. (b) *CH*₃*COONa* is a salt of weak acid and strong base. Hence its aqueous solution is alkaline.

🕀 www.studentbro.in

0.20

62. (b)
$$BaSO_{4} = Ba^{2+} + SO_{4}^{--}$$

Solubility constant $= S \times S$
 $1.5 \times 10^{-19} = S^{2}$; $S = \sqrt{1.5 \times 10^{-19}}$; $S = 3.9 \times 10^{-5}$
65. (d) $Ca(OH)_{2} \Rightarrow Ca^{++} + 2OH^{-}_{(2S)^{2}}$
 $K_{sp} = 4S^{3} = 4 \times \sqrt{3} \times \sqrt{3} \times \sqrt{3} = 12\sqrt{3}$
66. (a) Due to common ion effect.
67. (d) $PbCl_{2} \Rightarrow Pb^{2+} + 2Cl^{-}_{(2S)^{2}}$
 $K_{sp} = 4S^{3} = 4 \times (2 \times 10^{-2})^{3} = 3.2 \times 10^{-5}$
68. (a) $Ag_{2}S = 2Ag^{+} + S^{--}$
 $K_{sp} = 4S^{3}$
 $S = \sqrt[3]{\frac{K_{sp}}{4}} = \sqrt[3]{\frac{3.2 \times 10^{-11}}{4}} = 2 \times 10^{-6}$
69. (d) $CaCO_{3} \Rightarrow Ca^{++}_{S} + CO^{--}_{3}$
Solubility product of $CaCO_{3}$
 $K_{sp} = S^{2}$; $S = \sqrt{K_{sp}}$
It is a binary electrolyte.
 $S^{2} = K_{sp}$; $(3.05 \times 10^{-4})^{2} = K_{sp}$; $K_{sp} = 9.3 \times 10^{-8}$

71. (c)
$$PbCl_2 \rightarrow Pb_s^{++} + 2Cl_{2s}^{--}$$

 $K_{sp} = S \times (2S)^2 = [6.3 \times 10^{-3}] \times [12.6 \times 10^{-3}]^2$.

- (d) A salt of strong acid and strong base cannot be hydrolysed. In this case the equilibrium cannot shifted towards the backward.
- 73. (d) If we mixed any substance into the solution. Then the value of *pH* is increased these substance is a salt of weak acid and strong base.
- 74. (d) It is a salt of strong base and weak acid.

75. (a)
$$K_{sp} = 4s^3 = 4 \times [2.5 \times 10^{-2}]^3 = 62.5 \times 10^{-6}$$
.

76. (c)
$$NaCl \Rightarrow \frac{Na^+}{S} + \frac{Cl^-}{S}$$

 $K_{sp} = S^2$, $S = \sqrt{K_{sp}} = \sqrt{36} = 6$.
78. (d) $PbI_2 \Rightarrow Pb^{++} + 2I^-_{2S}$

$$K_{sp} = 4S^3 = 4 \times [2 \times 10^{-3}]^3 = 32 \times 10^{-9}$$

79. (b) When ionic product is greater than K_{sp} then precipitation occur

$$K_{sp} < 10^{-2} M Ca^{2+} + 10^{-3} M F^{-}$$

80. (d) In IVth group the S^{2-} concentration increase when added the NH_4OH because

$$NH_4OH \Rightarrow NH_4^+ + OH^-$$

$$H_2S \rightleftharpoons 2H^+ + S^2$$

 $OH^- + H^+ \Rightarrow H_2O$. So that S^{2-} is increased.

81. (c)
$$BaSO_{4} \rightleftharpoons Ba^{2+} + SO_{4}^{2-}$$

 $K_{sp} = S^{2} \Longrightarrow S = \sqrt{K_{sp}}$; $K_{sp} = [Ba^{2+}] \times [SO_{4}^{2-}]$
 $4 \times 10^{-10} = [1 \times 10^{-4}] \times [SO_{4}^{2-}]$
 $[SO_{4}^{2-}] = \frac{4 \times 10^{-10}}{1 \times 10^{-4}} = 4 \times 10^{-6}$.
82. (c) $AB_{2} \rightleftharpoons A_{(S)}^{2+} + 2B^{-}$
 $K_{sp} = 4S^{3}$
 $S = \sqrt[3]{\frac{K_{sp}}{4}} = \sqrt[3]{\frac{4 \times 10^{-12}}{4}} = 1 \times 10^{-4} gm.mol / litretonometric density of the second second$

83. (d)
$$[B] = \frac{\kappa_{sp} AB}{[A]} = \frac{1 \times 10^{-5}}{10^{-3}} = 1 \times 10^{-5} M$$

Where ionic product > K_{sp} , ppt formed

$$\therefore$$
 8 should be more then $10^{-5} M$.

84. (c)
$$NaCl_{(s)} \approx Na_{(aq)}^{+} + Cl_{(aq)}^{-}$$

85.

 $HCl \Rightarrow H^+ + Cl^-$. The increase in $[Cl^-]$ brings in an increase in $[Na^+] [Cl^-]$ which will lead for backward reaction because

$$K_{sp}(NaCl) = [Na^+][Cl^-]$$

means Ionic product $\geq K_{sp}$

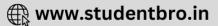
(d)
$$BaSO_4 \rightleftharpoons Ba^{++} + SO_4^{--}$$

(s)
 $K_{sp} = S^2; S = \sqrt{K_{sp}} = \sqrt{1.3 \times 10^{-9}}$

$$= 3.6 \times 10^{-5} mol / litre$$

- 87. (b) Alkaline, $CH_3COONa + H_2O = CH_3COOH + NaOH_{\text{Weak acid}} + Strong base$
- **88.** (c) Because it is a strong base.

89. (b) For pure water
$$[H^+] = [OH^-]$$
, $\therefore K_w = 10^{-12}$ s


90. (a)
$$MX_2 \approx M_{(S)}^{2+} + 2X_{(2S)^2}^{-}$$
; $4S^3 = 4 \times (0.5 \times 10^{-4})^3$
= 5×10^{-13}

- **91.** (a) Solubility coefficient = $[Pb^{2+}][Cl^{-}]^{2}$
- **92.** (a) Solubility of $Al(OH)_3$ is lesser than $Zn(OH)_2$.

93. (c)
$$NaCl_{(s)} \Rightarrow Na^+_{(aq)} + Cl^-_{(aq)}$$

 $HCl = H^+ + Cl^-$ The increase in $[Cl^-]$ brings in an increase in $[Na^+]$ $[Cl^-]$ which will lead for backward reaction because $K_{sp} NaCl = [Na^+] [Cl^-]$.

- 94. (c) Common ion effect.
- **95.** (a) $CaF_2 \approx Ca^{++}_{S} + 2F^{-}_{(2S)^2}$

$$K_{sp} = 4S^{3}$$

$$S = \sqrt[3]{\frac{K_{sp}}{4}} = \sqrt[3]{\frac{3.2 \times 10^{-11}}{4}} = 2 \times 10^{-4} \, m/l.$$

96. (d) In aqueous solution following euilibrium is exist. $H_2S = H^+ + HS^-$

While adding the dilute HCl solution

 $(HCl = H^+ + Cl^-)$ equilibrium is shift to the left side in $H_2S = H^+ + HS^-$

97. (d) $M_2 X_3 \rightleftharpoons 2M^{+++}_{K_{sp}} + 3X^{--}_{(2y)^2}$

Solubility product $K_{sp} = 108 y^5 mol \frac{d}{m^3}$

98. (b) Solubility is directly proportional to the K_{sp} .

99. (b)
$$PbCl_2 \Rightarrow Pb_S^{++} + 2Cl_{(2S)^2}^-$$

 $K_{sp} = S \times (2S)^2 = 4S^3$
 $S = \sqrt[3]{\frac{K_{sp}}{4}} = \sqrt[3]{\frac{1.5 \times 10^{-4}}{4}} = 3.34 \times 10^{-2}$.

- 101. (d) AlCl₃ on hydrolysis gives weak base and strong acid among all.
- **102.** (c) Fe^{3+} ions are hydrolysed to develop acidic nature.

$$103. (c) \quad K_h = \frac{K_w}{K_a \times K_b}$$

- **104.** (a) *KCN* is salt of strong base and weak acid.
- **105.** (c) Sulphides of Group-II radicals have low solubility product.
- 106. (c) Because NH_3 acts as Lewis acid and they give electron pair to H_3O^+ ion. H_3O^+ is a Lewis base. Which accept the electron pair from NH_3 .
- **107.** (c) Due to common ion effect.

108. (a) For
$$Ag_2SO_4 \rightarrow 2Ag^+ + SO_4^{--}$$

 $K_{sp} = (2x)^2 \cdot x$; $K_{sp} = 4x^3$; $K_{sp} = 4 \times (2.5 \times 10^{-2})^3$
 $K_{sp} = 62.5 \times 10^{-6}$

109. (b) For $AgCl \rightarrow Ag^+ + Cl^-$

$$K_{sp} = x^2; \qquad \qquad x = \sqrt{K_{sp}}$$

 $\sqrt{1 \times 10^{-6}} = 1 \times 10^{-3} mole / litre$.

110. (b) $AgCl \to Ag^{=} + Cl^{-}$

After *NaCl* is added $x = x + 1 \times 10^{-4}$ That is why Ag^+ will be less.

111. (b) Because of ionic product of *AgI* >> solubility product of its.

12. (a)
$$AX_2 \rightarrow A_x + 2X_x$$

 $K_{sp} = 4x^3$; $x = \sqrt[3]{\frac{3.2 \times 10^{-11}}{4}};$

 $x = 2 \times 10^{-4}$ mole/litre.

1

113. (c)
$$C_6H_5COONH_4 \rightarrow C_6H_5COO^- + NH_4^+$$

 $0.5 - \frac{.25}{100} \quad \frac{.25}{100} \quad \frac{.25}{100}$

According to Ostwald dilution law.

$$K = \frac{\alpha^2 C}{1 - \alpha} \qquad \qquad \left(\therefore \ \alpha = \frac{.25}{100} \right)$$
$$K = \alpha^2 C \qquad \qquad (\because \ 1 - \alpha = \text{Very small})$$
$$K = \frac{.25}{100} \times \frac{.25}{100} \times .5 \quad ; \quad K = 3.125 \times 10^{-6}$$
$$\mathbf{1} \quad (\mathbf{a}) \quad Sh_* S_* \rightarrow 2Sh^{+2} + 3S^{--} \quad ; \quad K = -(2x)^2 (3x)^3$$

114. (a)
$$Sb_2S_3 \rightarrow 2Sb^{+2} + 3S^{--}$$
; $K_{sp} = (2x)^2 \cdot (3x)^3$

$$K_{sp} = 108 x^5$$
; $K_{sp} = 108 \times (1 \times 10^{-5})^5 = 108 \times 10^{-25}$.

115. (b) When increasing the temperature the value of ionic product also increases.

116. (a) Hydrolysis constant
$$h = \frac{K_w}{K_a}$$

Hydrogen ion concentration - *p*H scale and Buffer solution

(a) *pH* of blood does not change because it is a buffer solution.

2. (c) 0.001 *M* of *NaOH* means
$$[OH^-] = .001$$

= $10^{-3} M \Rightarrow pOH = 3$
 $pH + pOH = 14 \Rightarrow pH = 14 - 3 = 11$

3. (d)
$$[H_3O^+]$$
 means $[H^+] = 6.2 \times 10^{-9} mol/l$

 $pH = -\log(6.2 \times 10^{-9}) = 8.21$

4. (b)
$$CH_3NH_2 + HCl \longrightarrow CH_3NH_3^+Cl^-$$

0.1 0.08 0
0.02 0 0.08
(Basic buffer solution)

$$pOH = pK_b + \log \frac{0.08}{0.02}$$

 $= pK_b + 0.602$
 $= 3.30 + 0.602 = 3.902$
 $\therefore pH = 10.09$
 $[H^+] = 7.99 \times 10^{-11} \approx 8 \times 10^{-11} M$

(b)
$$pH + pOH = pK_w$$

6. (d) $pH = -\log[H^+]$

$$5.4 = -\log[H^+]$$
; $[H^+] = 3.98 \times 10^{-6}$.

7. (a) $KCN + H_2O = KOH + HCN$. KOH is a strong base and HCN is a weak acid.

CLICK HERE

5٠

8. (c)
$$[H^+] = 10^{-3} M$$
, $pH = -\log[10^{-3}]$, $pH = 3$
9. (b) $[H^+] = [OH^-]$
 $K_w = [H^+] [OH^-] = 10^{-14}$

$$\therefore [H^+] = 10^{-7}, \ pH = -\log [H^+] = 7.$$

10. (d) pH = 5 means $[H^+] = 10^{-5}$ pOH = 14 - pH = 14 - 5 = 9 $[OH^-] = 10^{-pOH} = 10^{-9}$

11. (a)
$$pH = -\log [H^+]; [H^+] = 0.01 N$$

 $pH = -\log [10^{-2}]; pH = 2$

12. (d) $BOH \xrightarrow{} B^+ + OH^-$ Initial $C \xrightarrow{} 0 + OH^-$ At eq. $C - C\alpha = C\alpha$

Сα

$$K_{b} = \frac{C^{2}\alpha^{2}}{C(1-\alpha)} = C\alpha^{2} \text{ assuming } \alpha <<1; 1-\alpha \sim 1$$
$$10^{-12} = 10^{-2} \times \alpha^{2}; \ \alpha^{2} = 10^{-10}; \ \alpha = 10^{-5}$$
$$[OH^{-}] = C\alpha = .01 \times 10^{-5} = 10^{-7}$$

- **13.** (c) pH = 4 means; $[H^+] = 10^{-4}$ mol
- 14. (a) Buffer solution is a mixture of weak acid and its conjugate base.
- **15.** (b) Adding Na_2CO_3 to water makes the solution basic and hence a *pH* increases from 7.
- 16. (d) NaClO₄ is a salt of strong acid HClO₄. So it is a strong acid salt.
- **17.** (b) *NaOH* is a base, so that its pH > 7
- 18. (c) It is a strong base.
 1 *M* NaOH has maximum [OH⁻] and minimum [H⁺] and maximum pH.
- **19.** (c) When pH = 7 means neutral, pH < 7 means acidic, pH > 7 means basic.
- **20.** (d) As the solution is acidic, pH < 7. This is because $[H^+]$ from $H_2O[10^{-7}M]$ cannot be neglected in comparison to $10^{-10} M$
- **22.** (c) It is a strong acid and they lose proton in a solution.
- **23.** (a) $[OH^-] = 10^{-2} M$; pOH = 2pH + pOH = 14; pH = 14 - pOHpH = 14 - 2 = 12
- 24. (d) Order of acidic strength is $H_2Te > H_2Se > H_2S > H_2O$ Na_2O is a salt of NaOH + H_2O and H_2O is least acidic among given acids hence pH in this case will be max^m.

25. (b) *pH* of the solution
$$A = 3$$

 $[H^+]_A = 10^{-3} M.$
pH of the solution $B = 2$
 $[H^+]_B = 10^{-2} M$

Ionic Equilibrium 389

- $[H^+] = 10^{-3} + 10^{-2} = 10^{-3} + 10 \times 10^{-3} = 11 \times 10^{-3}.$ $pH = -\log(11 \times 10^{-3}) = 3 - \log 11$ = 3 - 1.04 = 1.95
- **26.** (a) $CN^- + H_2O \to HCN + OH^-$

Because *OH*⁻ concentration is increased.

- 27. (a) On dilution the *pH* of acid A increases while *pH* of base B decreases.
- **28.** (d) CH_3COONa is a salt of weak acid, (CH_3COOH) and strong base (NaOH).
- **29.** (b) The equilibrium will shift in the backward direction.

30. (b)
$$K_a = 10^{-5}$$
; $pH = 6$

$$pH = -\log K_a + \log \frac{[\text{Salt}]}{[\text{Acid}]} ; \quad 6 = -\log 10^{-5} + \log \frac{[\text{Salt}]}{[\text{Acid}]}$$
$$6 = 5\log 10 + \log \frac{[\text{Salt}]}{[\text{Acid}]} ; \quad 6 = 5 + \log \frac{[\text{Salt}]}{[\text{Acid}]}$$
$$\log \frac{[\text{Salt}]}{[\text{Acid}]} = 6 - 5 = 1 ; \quad \frac{[\text{Salt}]}{[\text{Acid}]} = \frac{10}{1}$$

31. (d) All are true - (a) is true for acid buffer, (b) for basic buffer, (c) is called buffer solution.

32. (b)
$$\frac{N}{100} = 0.01 \ N \ HCl$$
; $[H^+] = 10^{-2} \ M$; $pH = 2$
 $[OH] = 10^{-2} \ M$ for $NaOH$
 $pH + pOH = 14$; $pH = 14 - 2$; $pH = 12$

- **34.** (a) It is a buffer solution of strong acid and its weak conjugate base.
- 35. (c) $HA \Rightarrow H^+ + A^ [H^+] = 0.1 \ M$; $[H^+]^2 = K_a \times C$ $[H^+] = \sqrt{K_a \times C} = \sqrt{1 \times 10^{-5} \times 0.1} = \sqrt{10^{-6}}$ $[H^+] = 10^{-3} M$; pH = 3
- **36.** (c) As the solution is acidic, pH < 7. This is because $[H^+]$ from H_2O cannot be neglected in comparison to 10^{-8} .
- **37.** (c) Human body contain buffer solution. Its pH= 6.8
- **38.** (a) It is a neutral solution and its pH = 7
- **39.** (a) pH = 5, means $[H^+] = 10^{-5} M$. After dilution $[H^+] = 10^{-5} / 100 = 10^{-7} M$ $[H^+]$ from H_2O cannot be neglected. Total $[H^+] = 10^{-7} + 10^{-7} = 2 \times 10^{-7}$ pH = 7 - 0.3010 = 6.6990 = 7 (neutral).

40. (d)
$$[H^+] = \alpha . C = \frac{2}{100} \times .02$$
; $[H^+] = 4 \times 10^{-4} M$
 $pH = -\log [H^+] = 4 - \log 4$; $pH = 3.3979$
41. (a) $pH = p K_a + \log \left[\frac{\text{salt}}{\text{acid}}\right]$

$$= 9.30 + \log \left[\frac{0.2}{0.1}\right] = 9.30 + 0.3010 = 9.6.$$
42. (a) $pH = pK_a + \log \frac{|Sult|}{|Acid|}$
 $pH = -\log (1.8 \times 10^{-5}) + \log \frac{|10|}{|100|}$
 $= -\log 1.8 + 5 + \log 10^{-1}$
 $= -0.2553 + 5 - 1 = 3.7447 \text{ or } = 4$
43. (b) 20 ml. of 0.1 NHCl $= \frac{0.1}{1000} \times 20 \text{ gr}$ eq.
 $20ml. of 0.001 KOH = \frac{0.001}{1000} \times 20 \text{ gm}$ eq.
 $= 2 \times 10^{-5} \text{ g eq}.$
 \therefore HCl left unneutralised $= 2(10^{-3} - 10^{-5})$
 $= 2 \times 10^{-3}(1 - 0.01) = 2 \times 0.99 \times 10^{-3} = 1.98 \times 10^{-3} \text{ g eq}.$
Volume of solution $= 40 \text{ ml}.$
 \therefore [HCl] $= \frac{1.98 \times 10^{-3}}{40} \times 1000 M = 4.95 \times 10^{-2}$
 $\therefore pH = 2 - \log 4.95 = 2 - 0.7 = 1.3.$
45. (b) $10^{-7}M$ NaOH means $[OH^-] = 10^{-7}$; $pOH = 7$
 $pH = 14 - 7 = 7$
46. (a) $[H^+] = c \times \alpha = 0.1 \times \frac{30}{100} = 0.03 M$
48. (a) The pH of buffer solution never changed.
49. (c) $[H^+] = \frac{10^{-14}}{10^{-1}} = 10^{-13} \text{ mol / litre } pH = 13.$
50. (a) $pH = -\log[H^+]$; $7.4 = -\log[H^+]$; $[H^+] = 4 \times 10^{-8} M$
51. (a) The pH of 0.1M HCl = 1 Ionization of $H_2SO_4 = H^+ + SO_4^{--}$
52. (c) 1N NaOH solution have highest pH $[OH^-] = 1; pOH = 0; pH + pOH = 14$
 $pH = 14 - 0 = 14$
53. (c) $H_2O = [H^+][OH^-]$
 $HCl = [H^+][OL^-]$
 $Total $[H^+] = [H^+]_{H_2O} + [H^+]_{BCl} = 10^{-7} + 10^{-8}$
 $= 10^{-7}[1 + 10^{-1}]$
 $[H^+] = 10^{-7} \times \frac{11}{10}$
 $pH = -\log[H^+] = -\log[(0^{-7} + \frac{11}{10})]; pH = 6.958$
54. (c) $pK_a = -\log K_u, pK_b = -\log K_b$
 $pH = -\frac{1}{2}[\log K_a + \log K_w - \log K_b]$$

$$= -\frac{1}{2}[-5 + \log(1 \times 10^{-14}) - (-5)]$$
$$= -\frac{1}{2}[-5 - 14 + 5] = -\frac{1}{2}(-14) = 7$$

- **55.** (d) BaO, CaO and Na_2O are shows more than 7 pH because of their basic nature.
- **56.** (a) $MgCl_2 + 2H_2O \Rightarrow Mg(OH)_2 + 2HCl$
- **57.** (c) H_2SO_4 ionized in two step.

58. (b)
$$pH = pK_a + \log \frac{|\text{Salt}|}{|\text{Acid}|}$$

 $5.8 = 4.8 + \log \frac{|\text{Salt}|}{|\text{Acid}|} \text{ or } \log \frac{|\text{Salt}|}{|\text{Acid}|} = 1.0$
 $\frac{|\text{Salt}|}{|\text{Acid}|} = \text{antilog } 1.0 = 10$
 $\therefore \qquad \frac{|\text{Acid}|}{|\text{Salt}|} = \frac{1}{10} = 0.1$

- **59.** (b) It contains replacable *H* atom.
- **60.** (c) (i) 20 *ml* of 0.5 *N HCl*

$$0.5N \Rightarrow 1000 \text{ ml } 0.5 \text{ mole HCl}$$
 is present in 20 ml

$$=\frac{20\times0.5}{1000}=1.0\times10^{-2}$$

(ii) 35 ml of 0.1 N NaOH $0.1N \Rightarrow 1000 \, ml$ of 0.1 mole NaOH is 35 ml $= \frac{35 \times 0.1}{1000} = 0.35 \times 10^{-2}$

Total = $20 + 35 = 55 \ ml.$ $\Rightarrow (1.0-0.35)10^{-2} = 0.65 \times 10^{-2} \text{mole } HCl$ $HCl = H^+ + Cl^-$

$$\Rightarrow [HCl] = [H^{+}] + [Cl^{-}]$$

55 ml contains 0.65×10^{-2} mole of H^+ ions

$$1000 \ ml - \frac{0.65 \times 10^{-2} \times 10^{3}}{55} = \frac{6.5}{55}$$
$$pH = -\log[H^{+}] = -\log(6.5/55)$$

 $= \log 55 - \log 6.5 = 0.92$

Due to acidic nature of solutions the colour of phenolphthalein becomes pink.

🕀 www.studentbro.in

61. (b)
$$[H^+] = 2 \times 10^{-2} M$$

CLICK HERE

≫

∴
$$pH = -\log [2 \times 10^{-2}]$$
;
 $pH = 1.7$ *i.e.* in between 1 and 2.

63. (b) pH = 4, $(H^+) = 10^{-pH} = 10^{-4} M$

65. (c)
$$NaOH \Rightarrow Na^+ + OH^-$$

 $[OH^-] = 10^{-5} M ; [H^+] [OH^-] = 10^{-14}$
 $[H^+] = \frac{10^{-14}}{10^{-5}} ; [H^+] = 10^{-9} M ; pH = 9 .$

67. (b)
$$pH = pK_a + \log \frac{[\text{Salt}]}{[\text{Acid}]}$$
; $pH = 4.75 + \log \frac{0.1}{0.1}$
 $pH = 4.75 + \log 1$; $pH = 4.75$

68. (d) A weak acid and its salt with a strong base maintain pH 4 - 5

69. (a)
$$NaOH \Rightarrow Na^+ + OH^- = [OH^-] = 10^{-8} M.$$

70. (c) $[OH^-] = 0.0001 \ N$, pOH = 4, pH + pOH = 14

$$pH = 14 - pOH = 14 - 4 = 10$$

71. (d) 0.001 *M KOH* solution $[OH^{-}] = 0.001 M = 1 \times 10^{-3} M$ $[H^{+}] \times [OH^{-}] = 1 \times 10^{-14}$ $[H^{+}] = \frac{1 \times 10^{-14}}{10^{-14}}$

$$[OH^{-}]$$

$$[H^{+}] = \frac{1 \times 10^{-14}}{1 \times 10^{-3}} = 1 \times 10^{-14} \times 10^{+3}$$

$$[H^{+}] = 10^{-11} M$$

$$pH = 11$$

- (a) An acid buffer solution consists of solution of weak acid with strong base of its salt.
- **73.** (b) An acid buffer solution consists of a weak acid and its salt with strong base. *i.e.* $CH_3COOH + CH_3COONa$

74. (a)
$$pOH = pK_b + \log \frac{[\text{salt}]}{[\text{base}]}$$

= $5 + \log \frac{0.02}{0.2} = 5 + \log \frac{1}{10} = 5 + (-1) = 4$
 $pH = 14 - pOH = 14 - 4 = 10$

75. (b) [Salt]= 0.1 *M*, [Acid]= 0.1 *M*

$$K_a = 1.8 \times 10^{-5}$$
; $pH = -\log K_a + \log \frac{\text{[Salt]}}{\text{[Acid]}}$
= $-\log 1.8 \times 10^{-5} + \log \frac{0.1}{0.1} = -\log 1.8 \times 10^{-5}$

$$pH = 4.7$$
 .

76. (a) NH_4Cl and NH_4OH is a buffer solution (weak base and salt of strong acid).

77. (a)
$$pH + pOH = 14$$
; $pH = 14 - pOH$
 $\therefore [OH^{-}] = 10^{-7}$
 $pOH = 7$
 $\therefore pH = 14 - 7 = 7$.
78. (c) 0.01 *M Ba*(*OH*)₂ = 0.02*N Ba*(*OH*)₂

$$N_1V_1 = N_2V_2$$

[0.02N]×[50 ml] = N₂×100 ml
$$N_2 = \frac{0.02 \times 50}{100} = 10^{-2}N ; [OH^-] = 10^{-2}N$$

pOH = 2 or pH = 12

79. (b)
$$pH = -\log [H^+]$$
.

80. (a) Na_2CO_3 is a mixture of weak acid and strong base, so it is a base.

81. (b)
$$10^{-7} N HCl$$
 means $(H^+) = 10^{-7} M$

$$pH = -\log(H^+), \quad pH = 7$$

82. (c)
$$pH = 2$$
; $pH = -\log [H^+]$; $2 = -\log [H^+]$
 $[H^+] = 10^{-2} = 0.01 N$

- **83.** (b) *pH* does not change on addition of some concentration of *HCl*.
- **84.** (b) Solution of CH_3COONa on addition to acid shows a decrease in dissociation of acid due to common ion effect. To decrease in $[H^+]$ or increase pH.

85. (c)
$$pH + pOH = 14$$
; $pH = 14 - pOH$; $pH = 14 - 6 = 8$.

86. (b)
$$[H^+]_{\rm I} = 10^{-5} [H^+]_{\rm II} = 10^{-2}$$

Thus increase in $[H^+] = \frac{10^{-2}}{10^{-5}} = 1000$ times

87. (a) The *HCl* is a strong acid and they lose easily H^+ in solution.

88. (a)
$$X^- + H_2 O \Rightarrow OH^- + HX$$

$$K_{b} = \frac{[OH^{-}][HX]}{[X^{-}]}$$

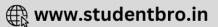
$$HX \Rightarrow H^{+} + X^{-}$$

$$K_{a} = \frac{[H^{+}][X^{-}]}{[HX]}$$

$$\therefore K_{a} \times K_{b} = [H^{+}][OH^{-}] = K_{w} = 10^{-14}$$
Hence $K_{a} = 10^{-4}$
Now as $[X^{-}] = [HX], pH = pK_{a} = 4$.

- **90.** (d) Buffer solution is formed. So the *pH* will not change.
- **91.** (b) Na₂CO₃ when react with water form strong base and weak acid. So its aqueous solution is basic.

92. (c)
$$K_w = [H_3 O^+][OH^-]$$


Concentration of H_3O^+ in distilled water = 1×10^{-6} mol/l.

Now $[H_3O^+] = [OH^-]$

$$K_w = [1 \times 10^{-6}] \times [1 \times 10^{-6}] = 1 \times 10^{-12}$$

- **93.** (a) $[OH^-] = 10^{-1}M$; pOH = 1pH + pOH = 14; pH = 14 - 1 = 13.
- 94. (a) Maximum *pH HClO* is a weak acid all of these. So that the salt of weak acid is also weak.
- **95.** (c) As the solution is acidic pH < 7. This is because $[H^+]$ from $H_2O[10^{-7}]$ cannot be neglected in comparison to $10^{-12} M$.
- **96.** (b) [Normal salt + acidic salt] is a buffer solution.

- **97.** (b) 100 *ml* of $\frac{M}{10}$ *NaOH* = 50*ml* of $\frac{M}{5}$ *NaOH*. They exactly neutralise 50 *ml* $\frac{N}{5}$ *HCl*. Hence *pH* of resulting solution = 7.
- **98.** (b) $M_1 = 6.0 M$ of HCl; $V_1 = ?$
 - M_2 =0.30 *M* is H^+ concentration in solution.
 - $V_2 = 150 ml$ of solution.

$$M_1V_1 = M_2V_2$$
; $6.0 \times V_1 = .30 \times 150$
 $V_1 = \frac{.30 \times 150}{.6} = 7.5 \ ml.$

99. (b) pH = 3, $[H^+] = 10^{-3} M$ $\therefore [H^+] = \sqrt{K \times c}$

$$[10^{-3}]^2 = K \times c$$
; $\frac{[10^{-6}]}{0.1} = K = 10^{-5}$

- **100.** (b) When ratio of concentration of acid to salt is increased *pH* decrease.
- 101. (c) For NH_4OH .

$$[OH^{-}] = C \cdot \alpha \quad ; \quad C = \frac{1}{10} M , \quad \alpha = 0.2$$
$$[OH^{-}] = \frac{1}{10} \times 0.2 = 2 \times 10^{-2} M$$
$$pOH = -\log [OH^{-}] = \log [2 \times 10^{-2}] ; \quad pOH = 1.7$$
$$pH = 14 - pOH = 14 - 1.7 = 12.30 .$$

102. (c) $pH = pK_a + \log \frac{|Sall|}{|Acid|}$. For small concentration of buffering agent and for maximum buffer capacity $\frac{|Sall|}{|Acid|} \approx 1$.

103. (a) [H⁺] = increased ten fold means *pH* of solution decreased by one.

$$pH = \log \frac{1}{[H^+]}$$

104. (a) Because the *pH* of buffer are not changed.

105. (c)
$$pH = pK_a + \log \frac{|\text{Salt}|}{|\text{Acid}|}$$
; $5.5 = 4.5 + \log \frac{|\text{Salt}|}{|0.1|}$
 $\log \frac{|\text{Salt}|}{0.1} = 5.5 - 4.5 = 1$
 $\frac{|\text{Salt}|}{0.1} = \text{antilog } 1 = 10$; $|\text{Salt}| = 1$

106. (a) Moles of $H_2SO_4 = \frac{0.49}{98} = 5 \times 10^{-3}$ moles of H_2SO_4 present per litre of solution (molarity) $= \frac{.005}{1} = .005 M$. $H_2SO_4 + 2H_2O \Rightarrow 2H_3O^+ + SO_4^{--}$ one mole of H_2SO_4 give 2 moles of H_3O^+ ions.

$$H_3O^+ = 2 \times (H_2SO_4) = 2 \times 0.005 = 0.01 M$$

 $[H^+] = 10^{-2} M$; $pH = 2$

107. (c) CH_3COONH_4 is a simple buffer and called salt of weak acid.

108. (c) N.eq. for
$$HCl = \frac{0.4}{1000} \times 50 = 0.02$$

N.eq. for $NaOH = \frac{0.2}{1000} \times 50 = 0.1$
Now $[OH^-]$ left $= 0.1 - 0.02$
 $[OH^-] = .08 = 8 \times 10^{-2} M$
 $pOH = -\log 8 \times 10^{-2} M$; $pOH = 1.0$

- **109.** (d) Buffer is mixture of weak base and its acid salt.
- **110.** (b) [NaOH] = 0.4/40 mole/l. = 0.1 M

$$[OH^{-}] = 10^{-1}M$$
, $[H^{+}] = 10^{-13}M$, $pH = 13$

- **111.** (d) pH + pOH = 14, pH = 4, $H^+ = 10^{-4}$ mole/litre.
- 112. (d) Buffer solution have constant *pH*. When we add the water into this buffer solution. So no effect on it.

113. (b)
$$Ba(OH)_2 \Rightarrow Ba^{2+} + 2OH^{-1}$$

 $S_{0} = [OH^{-1} - 2 \times 10^{-4} N]$

One molecule on dissociation furnishes $2OH^-$ ions.

So,
$$[OH^{-}] = 2 \times 10^{-4} N$$

 $N = M \times 2$; $M = \frac{N}{2} = \frac{2 \times 10^{-4}}{2} = 10^{-4}$
 $pOH = -\log[OH^{-}] = -\log(1 \times 10^{-4}) = -4$
 $pH + pOH = 14$; $pH = 14 - 4 = 10$.

114. (a) M.eq. of 0.10 $M HCl = \frac{0.10}{1000} \times 40 = 0.004 M$ M.eq. of 0.45 $M NaOH = \frac{0.45 \times 10}{1000} = 0.0045 M$ Now left $[OH^-] = 0.0045 - 0.004 = 5 \times 10^{-4} M$

Total volume = 50 *ml*.

$$[OH^{-}] = \frac{5 \times 10^{-4}}{50} \times 1000 ; [OH^{-}] = 1 \times 10^{-2}$$

$$pOH = 2$$
; $pH = 14 - pOH = 12$.

- **115.** (c) 0.001 $M HCl = 10^{-3} M [H^+], pH = 3$.
- **116.** (d) $[NaOH] = \frac{0.4}{40} = 0.01M; \quad [OH^-] = 10^{-2}M$ $[H^+] = 10^{-12}, \ pH = -\log[H^+] = 12$
- **117.** (b) Those substance which give a proton is called Bronsted acid while CH_3COO^- doesn't have proton so it is not a Bronsted acid.

- **120.** (c) $pH = -\log [H^+]$
- **121.** (d) pH + pOH = 14, pH = 4.0pOH = 14 - pH; pOH = 14 - 4.0 = 10.0
- **122.** (b) pH = 0 means $[H^+] = 10^\circ = 1M$. Hence solution is strongly acidic.
- **123.** (c) As the solution is acidic, pH < 7. This is because $[H^+]$ from $H_2O(10^{-7} M)$ cannot be neglected in comparison to $10^{-10} M$ HCl.
- **124.** (d) $H_3O^+ \Rightarrow OH^- + H_2$

pOH + pH = 14; 7 + 7 = 14; $[H^+] + [OH^-] = 10^{-14}$ $10^{-7} + 10^{-7} = 10^{-14}$; $[OH^-] = 10^{-7} gm ion/l.$

126. (b) When pH = 2, $[H^+] = 10^{-2} M$

127. (a)
$$[OH^-]$$
 ion conc. = $0.05 \frac{mol}{l} = 5 \times 10^{-2} \frac{mol}{l}$
 $pOH = -\log [OH^-] = -\log [5 \times 10^{-2}]$

pOH = 1.30; pH + pOH = 14

- pH = 14 pOH = 14 1.30 = 12.7
- **128.** (c) When pH = 3, then $[H^+] = 10^{-3} M$ after that we increased the *pH* from 3 to 6 then $[H^+] = 10^{-6} M$ means reduced 1000 times.
- **129.** (b) CO_2 is acidic oxide which on dissolution in water develops acidic nature.
- **130.** (d) If pH of any solution is 2.
 - Then $[H^+] = 10^{-2} M$

If pH of any solution is just double then pH = 4 and $[H^+]$ will be 10^{-4} .

- **131.** (c) A strong acid is not used to make a buffer.
- **132.** (d) pH = 1 means $[H^+] = 10^{-1} M$

Hence
$$[H_2SO_4] = \frac{10^{-1}}{2} = \frac{1}{20} = 0.05 M$$

- **133.** (c) The *pH* of blood is 7.4 due to presence of bicarbonates ions
- **134.** (c) As the solution is acidic, pH < 7. This is because $[H^+]$ from $H_2O[10^{-7}]$ cannot be neglected in comparison to 10^{-8}
- **135.** (a) *pH* will decrease because $[OH^-]$ increased due to this *pOH* is decreased.

136. (c)
$$[H^+] = 6 \times 10^{-4} M$$

 $pH = -\log [H^+] = -\log [6 \times 10^{-4}] = 3.22$.

- **137.** (c) $0.01 M HCl = 10^{-2} M [H^+], pH = 2$.
- **138.** (c) Because buffer solution have a constant *pH*.

139. (c)
$$10^{-6} M HCl = 10^{-8} M [H^+]$$
. Also from H_2O
 $[H^+] = 10^{-7} M$

Total $[H^+] = 10^{-7} + 10^{-8} = 10^{-7}[1+0.1] = 10^{-7}[1.1]$

Hence pH = 7 - 0.0414 = 6.96.

140. (b) $10^{-10} M HCl = 10^{-10} M [H^+]$. But $pH \neq 10$ because solution is acidic. This is because H^+ from $H_2O(10^{-7} M)$ cannot be neglected.

Total $[H^+] = 10^{-7} + 10^{-10}$

 $= 10^{-7} + (1 + 10^{-3}) = 10^{-7} (1.001)$

That is why pH = 7 (slightly less than 7)

141. (b) $[H^+] = 1.00 \times 10^{-6}$ mole/litre

 $pH = -\log [1.00 \times 10^{-6}]$; pH = 6.

- **142.** (a) $[H^+]$ is in moles per litre.
- 143. (d) As the solution is acidic, pH < 7. This is because $[H^+]$ from H_2O $(10^{-7}M)$ cannot be neglected in comparison to 10^{-8} .
- **145.** (b) *pH* of 0.001 *M HCl* = $10^{-3} M[H^+]$, *pH* = 3.
- **146.** (d) Because it can furnish H^+ ions in solutions.
- 147. (c) Because it is a strong acid.

 $H^{+} = 10^{-1}$ $pH = -\log [H^{+}] = -\log [10^{-1}]; pH = 1.$

148. (b) Buffer solution is a combination of weak acid and conjugate base. *NaCl* is a salt and *NaOH* is the base.

149. (a)
$$[H^+] = \sqrt{Kc} = \sqrt{10^{-5} \times 0.1} = 10^{-3}, \ pH = 3$$
.

- **150.** (d) In $\frac{N}{10}$ *NaOH* have $[OH^{-}] = 10^{-1} M$ means pOH = 1 and then pH + pOH = 14pH = 14 - pOH = 13.
- **151.** (b) Borate ions are hydrolyzed to develop alkaline nature in solution.

[VCM]

🕀 www.studentbro.in

- **152.** (d) Less the pH, more acidic is the solution.
- 154. (b) The equal conc. of salt and acid.

155. (c)
$$pH = -\log K_a + \log \frac{[RCN]}{[HCN]}$$

 $pH = -\log [5 \times 10^{-10}] + \log \left(\frac{0.15}{1.5}\right) = 8.302$

CLICK HERE

≫

157. (c)
$$pH = pK_a + \log \frac{[\text{Salt}]}{[\text{Acid}]}$$
 equimolar means

$$\frac{[\text{Saff}]}{[\text{Acid}]} = 1; \quad pH = 4.74 + 0 = 4.74$$

Get More Learning Materials Here :

- **158.** (a) Because of *NaCl* is a salt of strong acid and strong base. So that it is neutral.
- **159.** (c) When strong acid and strong base are react neutral salt are formed. So that *NaCl* is a neutral salt.

162. (d)
$$pH = -\log K_b + \log \frac{[\text{Salt}]}{[\text{Acid}]}$$

 $pH = -\log [1.8 \times 10^{-5}] + \log \frac{[\text{Salt}]}{1.0}$
 $9 = 4.7 + \log \frac{[\text{Salt}]}{1.0}$; $\log \frac{[\text{Salt}]}{1.0} = 4.7 - 9 = -4.3$
 $\frac{[\text{Salt}]}{1.0} = \text{Antilog} \frac{1}{4.3}$; $[S \text{ alt}] = 1.8$
163. (b) $pH = -\log K_b + \log \frac{[\text{salt}]}{[\text{acid}]}$
 $5 = -\log 10^{-4} + \log \frac{[\text{salt}]}{[\text{acid}]}$
 $\log \frac{[\text{salt}]}{[\text{acid}]} = 1$
 $\frac{[\text{salt}]}{[\text{acid}]} = \text{antilog} 1 = 10 : 1$

- **164.** (a) 1 *M KOH* show highest *pH* value because it is a strong base.
- **165.** (d) NH_4OH is a weak acid and NH_4Cl is a strong base salt.

166. (a) *pH* = 13.6

pOH = 14 - 13.6 = 0.4 $[OH^{-}] = Antilog (-0.4) = 0.3979$. So the value of $[OH^{-}]$ between 0.1 *M* and 1 *M*

- 167. (d) Aspirin is a weak acid. Due to common ion effect it is unionised in acid medium but completely ionised in alkaline medium.
- **168.** (b) $[H^+][OH^-] = 10^{-14}$; $(10^{-7})(10^{-7}) = 10^{-14}$
- **169.** (c) $HCl = 10^{\circ} M$ has pH = 0. The value of pH decreases as concentration further increases.
- **170.** (a) Because pure water has a 7 *pH*.
- **171.** (c) When concentration of $[H^+]$ increased then the value of *pH* is decreases.

$$pH = \log \frac{1}{[H^+]}$$

172. (c) The concentration of $[H^+] = 10^{-2}$ mole/litre

$$pH = -\log[H^+] = -\log[10^{-2}]; pH = 2$$

173. (d) Due to common ion effect.

$$NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^+$$

concentration of OH^- is increased so that solution become more basic and the pH is increased.

175. (a) Na_2CO_3 is basic in nature. So its *pH* is greater than 7.

- **176.** (c) It is not a mixture of weak acid or base and their strong salt.
- **177.** (a) $[H^+] = \text{Antilog}(-4.58)$; $[H^+] = 2.63 \times 10^{-5}$ moles / litre
- **178.** (c) $10^{-2} M NaOH$ will give $[OH^{-}] = 10^{-2}$ ∴ pOH = 2, Also pH + pOH = 14

$$\therefore pH = 12$$

179. (a)
$$pH = pK_a + \log \frac{[\text{Salt}]}{[\text{Acid}]} = -\log 2 \times 10^{-5} + \log \frac{10 \times 1}{50 \times 2} = 4$$
.

180. (b) 0.001 *M* NaOH means $[OH^-] = 10^{-3}$; pOH = 3pH + pOH = 14; pH = 14 - 3

$$pH = 11$$
; $[H^+] = 10^{-11}$ mole-litre⁻¹

181. (c)
$$[H^+] = C . a$$

182

$$[H^+] = 0.1 \times \frac{1}{100} = 10^{-3}$$
$$pH = -\log [H^+] = -\log 10^{-3} = 3$$

(b)
$$pH = 4$$

 $pH + pOH = 14$; $pOH = 14 - pH$
 $pOH = 14 - 4 = 10$; $[OH^{-}] = 10^{-10} M$

183. (b)
$$pH = \log \frac{1}{[H^+]} = \log \frac{1}{[3 \times 10^{-3}]} = 2.523$$

- **185.** (c) It is a strong base.
- **186.** (b) $[H^+]$ Concentration in 0.01*M HCl* is $10^{-2} M$ because 0.01 *M HCl* have only H^+

$$HCl \Rightarrow H^+ + Cl^-$$
.

187. (b) The value of H_3O^+ ions will not changed.

$$CH_3COOH + H_2O \Rightarrow CH_3COO^- + H_3O^+$$

188. (a) H_2O_2 (Hydrogen peroxide) is a corrosive volatile liquid. It is slightly acidic in nature. Its *pKa* value is approximately 10^{-12} .

192. (b)
$$pH = \log \frac{1}{H^+}$$
; $pH = \log \frac{1}{10^{-3}}$; $pH = 3$.

193. (b) NH_3 is Lewis base because of one lone pair of electron.

194. (b)
$$Ba(OH)_2 \rightarrow Ba^{+2} + 2OH^-$$

 $.05M + 2\times 0.5M$
 $pOH = \log \frac{1}{[OH]^-} = \log \frac{1}{.1} = 1$
 $pH + pOH = 14$; $pH + 1 = 14$; $pH = 14 - 1 = 13$

195. (a) If concentration of acid is increases ten times in a buffer then *pH* of the solution is increase by one.

🕀 www.studentbro.in

198. (b) pH > 7 = Basic

It means contain more hydroxide ions than carbonate ions.

199. (a) At 7pH the concentration of OH^- and H^+ are equal.

200. (a,d) M.eq. of 0.01
$$M HCl = \frac{.01 \times 100}{1000} = 1 \times 10^{-3}$$

 $pH = 3$

M.eq. of .02 $M H_2 SO_4 = \frac{.04 \times 50}{1000} = 2 \times 10^{-3}$ M.eq. of .02 $M NaOH = \frac{0.02 \times 50}{1000} = 1 \times 10^{-3}$ Left $[H^+] = 2 \times 10^{-3} - 1 \times 10^{-3} = 1 \times 10^{-3}$; pH = 3

- **202.** (a,b,c) Because buffer solution are mixture of weak acid or weak base and their salt.
- **203.** (c) Because pH = 8 is basic nature but HCl is a strong acid.

204. (c)
$$H_2SO_4 = 0.05 \times 2$$

 $\therefore [H^+] = 0.1$ and $pH = 1$

205. (b) $Mg(OH)_2 \Rightarrow Mg^{2+} + 2OH^{-1}$

$$K_{sp} = [Mg^{2+}][OH^{-}]^{2}$$

$$1 \times 10^{-12} = 0.01 [OH^{-}]^{2}$$

$$[OH^{-}]^{2} = 1 \times 10^{-10} \implies [OH^{-}] = 10^{-5}$$

$$[H^{+}] = 10^{-14} / 10^{-5} = 10^{9}$$

$$pH = -\log[H^{+}] = -\log[10^{-9}] = 9$$
206. (b) $[OH^{-}] = 1 \times 10^{-5}$

$$pOH = -\log[OH^{-}] = 5$$

 $pH + pOH = 14 \implies pH = 14 - 5 = 9.$

Critical Thinking Questions

- 1. (b) K_{sp} of $AgI = 1.5 \times 10^{-16}$ $10^{-8} M Ag^{+}$ and $10^{-8} M I^{-}$ Ionic product $= 10^{-16}$ K_{sp} = Ionic product
- (a) HClO is the weakest acid. Its conjugate base ClO⁻ is the strongest base.
- **3.** (b) $B(OH)_3$ not have H^+

4. (a)
$$h = \frac{k_w}{k_a} = \frac{1 \times 10^{-14}}{4.5 \times 10^{-10}} = 2.22 \times 10^{-5}$$

5. (d)
$$MX_4 \to M_s + 4X_{4s}$$
; $K_{sp} = (4s)^4 s$; $K_{sp} = 256 s^5$

$$s = \left(\frac{K_{sp}}{256}\right)^{1/5} \,.$$

6. (a) Lewis acid are electrophiles because they accept election pairs.

7. (c) $2HI = H_2 + I_2$ Initial $2 HI = H_2 + I_2$

At equilibrium $2-\alpha \quad \frac{\alpha}{2} \quad \frac{\alpha}{2} = 2-\alpha + \frac{\alpha}{2} + \frac{\alpha}{2} = 2$.

- **8.** (a) Because they have vacant *d*-orbital in central atom.
- **9.** (a) Energy has to be spent for the total dissociation of weak acid.
- **10.** (a) pK_a of acid A = 4; pK_a of acid B = 5

We know that $pK_a = -\log K_a$

: Acid A
$$K_a = 10^{-4}$$

Acid *B* $K_a = 10^{-5}$

Hence *A* is ten times stronger than that of *B*.

11. (b)
$$\frac{\alpha_1}{\alpha_2} = \sqrt{\frac{K_{a_1}}{K_{a_2}}} = \sqrt{\frac{3.14 \times 10^{-4}}{1.6 \times 10^{-5}}} = 4:1$$

12. (d) It is a salt of weak acid and weak base.

13. (c)
$$HA \Rightarrow H^+ + A^-$$
; $K_a = \frac{[H^+][A^-]}{[HA]}$ (i)

neutralization of the weak acid with strong base is

$$HA + OH^{-} \rightleftharpoons A^{-} + H_{2}O$$

$$K = \frac{[A^{-}]}{[HA][OH^{-}]} \qquad \dots \dots (ii)$$

dividing (i) by (ii) $\frac{K_a}{K} = [H^+][OH^-] = K_w = 10^{-14}$

$$K = \frac{K_a}{K_w} = \frac{10^{-5}}{10^{-14}} = 10^9$$
.

14. (d) NH_4Cl undergoes cationic hydrolysis hence pH is >7 because the solution due to cationic hydrolysis in acids.

NaCN undergoes anionic hydrolysis hence pH is >7.

HCl is strong acid and *NaCl* is neutral solution.

Hence the pH of given solutions will increases.


$$HCl < NaCl < NaCN < NH_4Cl$$

- **15.** (c) It is a $HClO_4$
- **16.** (d) Smaller the $_{p}K_{a}$ value, strong the acid.
- 17. (d) It involves gain and loss of electron pair (Lewis concept).

18. (b)
$$H^{-}_{(aq.)} + H_2 O_{(l)} \rightarrow OH^{-} + H_2$$
.

19. (b)
$$K_H = \frac{K_a}{K_w} = \frac{10^{-4}}{10^{-14}} = \frac{1}{10^{-10}} = 10^{10}$$

- **20.** (d) Acidity is directly proportional to oxidation number. As the O.No. of *S*, *P* and *Cl* in H_2SO_3, H_3PO_3 & $HClO_3$ is +4, +3 & +5 respectively so decreasing order of acidity will be III > I > II.
- **21.** (a) A substance which can donate a proton is known as acid so NH_4^+ will be a acid.
- **22.** (b) Acetic acid is a weak acid.
- **23.** (a) Because it is a acidic oxide.

24. (b)
$$[Ca^{2+}][F^{-}]^{2} = \left[\frac{10^{-2} \times V}{2V}\right] \times \left[\frac{10^{-3} \times V}{2V}\right]^{2} = 1.25 \times 10^{-9}$$
.

- 25. (a) The degree of hydrolysis of a salt of weak acid and weak base is independent of concentration of salt.
- **26.** (c) C = 0.1M; $\alpha = 1\%$; $(H^+) = C \times \alpha$

$$=0.1 \times \frac{1}{100} = 10^{-3}$$
; $(H^+) = 10^{-3}$; $pH = 3$.

- **27.** (d) $HClO_4$ is a strong acid, because its oxidation no is + 7.
- **28.** (d) Acceptor of electron pair is known as lewis acid. *S*, : CH_2 , $(CH_3)_3B$ all can accept an electron pair so answer is (d).

29. (b)
$$Mg(OH)^2 \Rightarrow Mg^{2+} + 2OH^-_{(2s)^2}$$

 $K_{sp} = 4S^3 \Rightarrow S = \sqrt[3]{\frac{K_{sp}}{4}} = \sqrt[3]{\frac{1.2 \times 10^{-11}}{4}}$
 $S = 8.16 \times 10^{-4}$
30. (d) $K_a = \frac{[H^+][CN^-]}{[HCN^-]}$
 $6.2 \times 10^{-10} = \frac{[H^+][0.02]}{[HCN^-]}$

$$[H^+] = \frac{6.2 \times 10^{-10} \times 0.01}{0.02} = 3.1 \times 10^{-10}$$

[0.01]

31. (b) NH_3 presence of lone pair of electrons.

32. (a)
$$CuBr = Cu^{+} + Br^{-}_{(S)}$$

 $K_{sp} = S^{2} = (2 \times 10^{-4})^{2} = 4 \times 10^{-8} \frac{mol^{2}}{l^{2}}$

33. (c) $Na_2SO_4 = 2Na^+ + SO_4^{2-}$ (0.004-x) 2x x

 $\therefore x = 3 \times 10^{-3}$

Since both the solution are isotonic 0.004 + 2x = 0.01

$$\therefore \text{ Percent dissociation } = \frac{3 \times 10^{-3}}{0.004} \times 100 = 75\% \text{ .}$$

34. (a)
$$Cr(OH)_3 \rightarrow Cr_x^{+3} + 3OH_3^-$$

 $K_{sp} = x.(3x)^3 = 27x^4$
 $x = 4\sqrt{\frac{K_{sp}}{27}}$; $x = 4\sqrt{\frac{2.7 \times 10^{-31}}{27}}$
 $x = 1 \times 10^{-8} \text{ mole/litre.}$
35. (a) $H^+ = c.\alpha = \sqrt{K_a.c}$

$$pH = -\log\left(\sqrt{K_a \cdot c}\right)^{1/2} = \frac{1}{2}\left[-\log K_a - \log c\right]$$
$$= \frac{1}{2}\left[4.74 - \log 10^{-2}\right] = \frac{1}{2}\left[4.74 + 2\right] = 3.37$$

36. (b)
$$Ag_2SO_4 \approx 2Ag^+ + SO_4^{--}$$

$$K_{sp} = 4S^{3}; K_{sp} = 2 \times 10^{-5}$$

$$S = \sqrt[3]{\frac{2 \times 10^{-5}}{4}} = 0.017 \ m/l = 1.7 \times 10^{-2}$$

$$Ag BrO_{3} \Rightarrow Ag^{+} + BrO_{3}^{-}$$

$$K_{sp} = S^{2}; K_{sp} = 5.5 \times 10^{-5}$$

$$S = \sqrt{5.5 \times 10^{-5}} = 7.4 \times 10^{-3} \ m/l.$$

37. (c)

CLICK HERE

≫

OH Phenol are more acidic than ethanol because of stabilization of phenoxide as compare to ethoxide ion.

38. (b)
$$X^{-} + H_2 O \Rightarrow HX + OH^{-}$$

 $K_h = \frac{10^{-14}}{10^{-5}}$ so $h = \sqrt{\frac{10^{-9}}{10^{-1}}} = 10^{-4}$
 $100 \times 10^{-4} = 10^{-2}$
So, 0.01%.
39. (a) $K_a = 1.0 \times 10^{-5}$

 $K_h = hydrolysis constant$

$$K_h = \frac{K_w}{K_a} = \frac{10^{-14}}{10^{-5}} = 10^{-9}$$

degree of hydrolysis (*h*) = $\sqrt{\frac{K_h}{C}}$

$$=\sqrt{\frac{10^{-9}}{0.001}} = \sqrt{10^{-6}} = 10^{-3}$$
; $h = 10^{-3}$

40. (b) Basic radicals of group II & IV are precipitated by H_2S in the form of their sulphides. IInd group in acidic medium & IV group in alkaline medium. They precipitate when ionic product increases than solubility product.

🕀 www.studentbro.in

Get More Learning Materials Here :

- **41.** (a) After mixing $[Ag^+][Cl^-] > K_{sp}$
- 42. (a) $K_{sp} > \text{ionic product } 1 \times 10^{-10} > 5 \times 10^{-11}$
- **43.** (a) 1 litre of water contains 1000/18 mole.
 - So degree of ionization = $\frac{10^{-7} \times 18}{1000} = 1.8 \times 10^{-7}$ %.
- **44.** (a) AgCl $K_{sp} = 1.2 \times 10^{-10}$
 - $S = \sqrt{1.2 \times 10^{-10}} ; S = 1.09 \times 10^{-5}$ AgBr $K_{sp} = 3.5 \times 10^{-13}$ $S = \sqrt{3.5 \times 10^{-13}} = 5.91 \times 10^{-6}$

So that *S* of *AgBr* is less than that of *AgCl*.

45. (a) $K_{sp} = 4S^3$

 $4S^3 = 3.2 \times 10^{-8}$; $S = 2 \times 10^{-3} M$.

46. (c)
$$\frac{2.8 \times 10}{0.1} = 2.8 \times 10^{-9} ML^{-1}$$
.

47. (b)
$$AB \Rightarrow A^+ + B^-$$
; $K_{sp} = S^2$
 $S = \sqrt{K_{sp}} = \sqrt{4 \times 10^{-10}} = 2 \times 10^{-5}$

48. (b)
$$S = 1.435 \times 10^{-3} g/l$$
, $= \frac{1.435 \times 10^{-3}}{143.5} = 10^{-5} M$
 $K_{sp} = S \times S = 10^{-10}$

49. (b) pKa = 5, so $Ka = 1 \times 10^{-5}$

$$\alpha = \sqrt{\frac{Ka}{C}} = \sqrt{\frac{1 \times 10^{-5}}{0.1}} = 1 \times 10^{-2}$$

- **50.** (c) Presence of common ion decreases the solubility of salt.
- **51.** (d) $Ag_2S > CuS > HgS$.

Solubility of $CuS = \sqrt{10^{-31}} = 3.16 \times 10^{-16} mol/lit.$ Solubility of Ag_2S

$$=\sqrt[3]{\frac{K_{sp}}{4}} = \sqrt[3]{\frac{10^{-42}}{4}} = 6.3 \times 10^{-5} mole \ / \ litre$$

Solubility of $HgS = \sqrt{K_{sp}} = \sqrt{10^{-54}} = 10^{-27} mol / litre.$

52. (c)
$$pH = 3.82 = -\log[H^+]$$

 $(H^+) = 1.5 \times 10^{-4}$ mole/litre.

53. (b)
$$pH = pK_a + \log \frac{[\text{salt}]}{\text{acid}} = 4.57 + \log \frac{0.10}{0.03} = 5.09$$

54. (c) For a monobasic acid

$$[H^+] = C\alpha$$
$$= \frac{1}{10} \times 0.001 = 10^{-4} \implies pH = 4$$

55. (a)
$$K_{sp} = [As^{3+}][S^{2-}], S = 5\sqrt[5]{\frac{K_{sp}}{108}}$$

= $5\sqrt{\frac{2.8 \times 10^{-72}}{108}} = 1.09 \times 10^{-15}$

56. (d) Dissociation constant of
$$HA = 10^{-9}$$

$$HA \rightleftharpoons H^{+} + A^{-}$$

$$[H^{+}] = \sqrt{\frac{K_{a}}{C}} = \sqrt{\frac{10^{-9}}{0.1}} ; [H^{+}] = 10^{-4}$$

$$\therefore pH = 4$$

$$\therefore pH + pOH = 14$$

$$pOH = 14 - pH = 14 - 4 ; pOH = 10$$
1000

57. (d)
$$\alpha = 1.9 \times 10^{-9}$$
; $C = \frac{1000}{18}$
 $K = \frac{[H^+][OH^-]}{(H_2O)} = C\alpha^2$

$$= 1.9 \times 10^{-9} \times 1.9 \times 10^{-9} \times \frac{1000}{18} = 2.0 \times 10^{-16}$$

58. (c)
$$K = Ka_1 \times Ka_2 = 4.5 \times 10^{-3} \times 1.7 \times 10^{10}$$

 $H^+ = \sqrt{Kc} = \sqrt{4.5 \times 10^{-3} \times 1.7 \times 10^{-10} \times .01}$
 $= .87 \times 10^{-7}$

$$pH = -\log 0.87 \times 10^{-7} = 7 - 0.93 = 6.07$$
.

59. (a) Given that Concentration of solution =.1

Degree of ionisation $= 2\% = \frac{2}{100} = .02$ Ionic product of water $= 1 \times 10^{-14}$

Concentration of $[H^+]$ = Concentration of solution X degree of ionisation = $.1 \times .02 = 2 \times 10^{-3} M$

Concentration of $[OH^-] = \frac{\text{Ionic product of water}}{[H^+]}$

$$=\frac{1\times10^{-14}}{2\times10^{-3}}=0.5\times10^{-11}=5\times10^{-12}\,M\,.$$

60. (a) $HgSO_4 \rightarrow Hg^{++} + SO_4^{--}$

CLICK HERE

>>

$$K_{sp} = x^2$$
; $x = \sqrt{K_{sp}}$; $x = \sqrt{6.4 \times 10^{-5}}$
 $x = 8 \times 10^{-3}$ mole/litre.

61. (a)
$$K = c\alpha^2 = 0.1 \times \left(\frac{1.34}{100}\right)^2 = 1.8 \times 10^{-5}$$
.

62. (c)
$$[H^+] = 1 \times 10^{-4} M \Rightarrow [H^+] [OH^-] = 1 \times 10^{-14}$$

$$\therefore [OH^{-}] = \frac{1 \times 10^{-14}}{0.5 \times 10^{-4}} = 2 \times 10^{-10} M$$

🕀 www.studentbro.in

Get More Learning Materials Here : 📕

63.	(d)	Because $HClO_4$ is a strong acid. While buffer is
		a mixture of weak acid and their salt.
		Initial concentration = 0.006 $M \Rightarrow$
$K_a = 6 \times 10^{-5}$		
		equilibrium reaction.
		$C_{6}H_{5}COOH \approx C_{6}H_{5}COO^{-} + H^{+}$ $C_{C(1-a)} \qquad O O O O O O O O O O$
		$K_a = C\alpha^2$ (: 1 - $\alpha \approx 1$) for weak electrolyte
		$\alpha = \sqrt{\frac{K_a}{C}}$; $\alpha = \sqrt{\frac{6 \times 10^{-5}}{0.006}}$; $\alpha = 10^{-1}$
		$\therefore [H^+] = C\alpha = 0.006 \times 10^{-1} = 6 \times 10^{-4} M.$
65.	(a)	$pOH = pKb + \log \frac{[Salt]}{[Base]}$
		$14 - 9.35 = -\log(1.78 \times 10^{-5}) + \log\frac{[Salt]}{100}$
		$[Salt] = 79.9 \Rightarrow \frac{w}{132} \times 1000 = 79.9 \Rightarrow w = 10.56$
66.	(a)	$pH = 6$ means $[H^+] = 10^{-6}M$
		$pH = 3$ means $[H^{=}] = 10^{-3}M$
		After mixing,
		Total $[H^+] = \frac{(10^{-6} + 10^{-3})}{2} = \frac{1.001 \times 10^{-3}}{2}$
		$= 5.005 \times 10^{-4}$
		$pH = 4 - \log 5.005$; $pH = 3.301$.
67.	(b)	$[H^+] = \sqrt{K \times C}$
		$[H^+] = \sqrt{4 \times 10^{-10} \times 1}$; $[H^+] = 2 \times 10^{-5}$ mole/litre
68.	(b)	Moles of $[OH^-] = M \times V$
		Number of $NaOH = 0.3 \times 0.005 \times 2 = 0.0030$
69.	(d)	$[H^+][OH^-] = 10^{-13.26}$
		$\therefore [H^+] = [OH^-], \therefore [H^+]^2 = 10^{-13.26}$
		$[H^+] = 10^{\frac{-13.26}{2}}$
		pH = 6.63.
7 0 .	(b)	$pH = pKa + \log \frac{[Salt]}{[Acid]}$
		pH = pKa
		$Ka = 0.1 \times (10^{-3.5})^2 = 0.1 \times 10^{-7} = 10^{-8} \implies pH = 8$
71.	(a)	$pH = -\log K_a + \log \frac{[\text{Salt}]}{[\text{Acid}]}$
		$[Salt] = \frac{0.2 \times 50}{1000} = 0.01 ; [Acid] = \frac{0.5 \times 40}{1000} = 0.02$

 $pH = -\log (1.8 \times 10^{-4}) + \log \frac{0.01}{0.02}$ $pH = 4 - \log (1.8) + \log 0.5$ $pH = 4 - \log (1.8) - 0.301$ pH = 3.4

72. (c) HCO_3^- and H_2O

73. (a) $[H^+] = C \times \alpha = 0.1 \times 0.1 = 10^{-2} M$

$$pH = 2; pOH = 12; [OH^{-}] = 10^{-12} M.$$

- **74.** (c) Decreasing order of acidic character is $H_2SO_4 > CH_3COOH > H_2CO_3$
- **75.** (c) The acidic nature increases in the order. $NaNO_2 < NaCl < H_2S < H_2SO_4$
- 76. (a) $[OH^{-}] = 0.05 = 5 \times 10^{-2} M$ $pOH = 2 - \log 5 = 1.3$ pH + pOH = 14pH = 14 - 1.3 = 12.7
- **77.** (b) Na_2O form *NaOH*. So that it is basic oxide.
- **78.** (a) $CH_3COO^- + H_2O \Rightarrow CH_3COOH + OH^-$

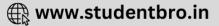
$$\therefore [OH^{-}] = c \times h; \quad h = \sqrt{\frac{K_w}{K_a} \times c} = \sqrt{\frac{10^{-14}}{1.8 \times 10^{-5}} \times 1}$$
$$= 2.35 \times 10^{-5}$$
$$\therefore pOH = 4.62; \quad pH = 9.38 \approx 9.4$$

Assertion & Reason

- (c) *HCl* is a strong electrolyte since it will produce more *H*⁺, comparison than that of *CH*₃*COOH*. Hence assertion is true but reason false.
- (b) For sparingly soluble salts, reason is not a correct explanation. Hence both assertion and reason are true but reason is not a correct explanation of assertion.
- 3. (a) Aq. solution of $FeCl_3$ on standing produce brown ppt. Due to hydrolysis it produce ppt. of $Fe(OH)_3$ which is of brown colour. Hence both are correct and reason is a correct explanation.
- (a) Barium carbonate is more soluble in *HNO*₃ than in water become carbonate is a weak base and reacts with the *H*⁺ ion of *HNO*₃ causing the barium salt to dissociate.

 $BaCO_3 + HNO_3 \rightarrow Ba(NO_3)_2 + CO_2 + H_2O$

🕀 www.studentbro.in


CLICK HERE

≫

- 5. (a) The conjugate base of $CHCl_3$ is more stable than conjugate base of $CHF_3(CF_3)$. CCl_3 stabilized by -I effect of chlorine atoms as well as by the electrons. But conjugate base of $CH_3(CH_3)$ is stabilized only by -I effect of flourine atoms. Here both assertion and reason are true and reason is correct explanation of assertion.
- 6. (c) Ionic product of A_gBr is greater than that of A_gCl in comparison with there solubility product A_gBr will precipitate. First rather than that of A_gCl .
- **9.** (e) It is fact that ionic reactions are instantaneous due to the fact that oppositely charged ions exert strong forces and combine immediately.

Get More Learning Materials Here : 📕

